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I. 0 SUMMARY

This report considers the utilization and the validation of a

computer program designed for aircraft interior noise predic-

tion. The program, entitled PAIN, permits (in theory) pre-

dictions of sound levels inside propeller driven aircraft

arising from sidewall transmission. The objective of the

present work is to determine the practicality of making pre-

dictions for various airplanes and the extent of the program's
\

capabilities. The ultimate purpose is to discern the quality

of predictions for tonal levels inside an aircraft occurring

at the propeller blade passage frequency and its harmonics.

This effort involves three tasks:

I) program validation through comparisons of predictions

with scale-model test results,

2)

3)

development of utilization schemes for large (full

scale) fuselages, and

validation through comparisons of predictions with

measurements taken in flight tests on a turboprop

aircraft.

Findings should enable future users of the program to effi-

ciently undertake and correctly interpret predictions.
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2.0 INTRODUCTION

PAIN (an acronym for Propeller _Aircraft Interior Noise) is

a computer program that has been developed for predicting

sound levels inside an airplane caused by the rotation of

a propeller (of any design) alongside. PAIN can calculate

the tonal levels in the cabin space occurring at the pro-

peller blade passage frequency and its harmonics.

PAIN mechanizes an analytical model that can be found in

Reference (I). The program's Users' Manual, Ref. (2), con-

tains a basic overview of the mechanization and specifies

the input data requirements. There are some features of

the PAIN model that make it unique in interior noise work:

I) it requires a precise description of the propeller noise

signature (pressure field) on the fuselage skin,

2) fuselage sidewall dynamic restraint offered by a struc-

turally integral stiffened floor in a ring-stringer

stiffened cabin shell is included, and

3) the acoustic modes of the complex cabin configuration

(with floor partition) are utilized; cabin acoustic and

fuselage structural modal losses are computed using the

sidewall trim properties.

Theoretical developments, experiments, and validation studies

that preceded PAIN and culminated in its invention are docu-

mented in Refs. (3) through (6). Some preliminary validation

of PAIN for propeller noise prediction is given in Appendix E

of Ref. (I). However the work reported herein should be con-

sidered the fundamental validation of the model. Here, the

quality of PAIN interior noise predictions is explored through

-2-



more extensive comparisons with scale, model and flight tests'

results. The primary goal is to develop insight into the

use of PAIN as a tool to make reliable full-scale aircraft

predictions.

2.1 The PAIN Model

The elements of the PAIN model include a fuselage and a pro-

peller (Figures I and 2). The fuselage consists of a cylin,

der stiffened by ring frames and stringers, and a flDor that

•is structurally an integral part of the fuselage. The in-

terior surface of the cabin (sidewall) is finished out with

a trim consisting of insulation covered with a lining. The

propeller rotates about an axis parallel to the center line

of the fuselage. PAIN will predict the space average sound

pressure levels in the cabin space at each of the harmonics

of the propeller (up to a maximum of ten (10) harmonics).

PAIN works with the pressure time histories (signatures) as

defined over the fuselage at a number of closely spaced

points on a grid that lies in the fuselage skin (Fig. 3).

The pressures can be specified at up to 160 points on the

upper quarter surface of the fuselage nearest the propeller.

Fourier series are used to define the amplitudes and phases

of each harmonic (at each location). PAIN then generates

data for an identical grid on the lower quarter surface of

the fuselage nearest the propeller (using the data input

for the upper grid). The propeller data must be generated

with a propeller noise prediction program such as PROPFAN

(7) or NASA ANOPP (Aircraft Noise Prediction Program) (8).

Structural properties of the cylinder and floor are required

as input data to compute the fuselage structural modes

-3-
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(resonance frequencies and mode shapes). Associated struc-

tural loss factors must be input if the cabin is bare, but

if trim is installed, the required modal loss factors are

computed for the particular trim installation (estimates

for the bare fuselage may still be input).

Similarly, acoustic modal properties of the cabin space (reso-

nance frequencies, mode shapes, and loss factors) are calcu-

lated from _nput data specifying the cabin shape (floor

angle, 8 o' of Figure I, and the cabin length) and the trim

properties.

Transmission and absorption characteristics of the trim (at

a given frequency) are computed using input data for the

wave impedance and complex acoustic wavenumber in the insu-

lation, and the trim lining surface weight and its loss

factor (theoretically as measured installed).

A step-by-step procedure to be followed in parameterizing

the interior noise model is given in Section 3.0 of Ref. (2).

Elaboration on the procedure and on the preparation of input

data for full scale aircraft predictions is a major focus

of this report.

2.2 PAIN Program Descrintion

The main program PAIN computes and outputs the interior sound

levels. It requires (as input) data that are generated by

four auxiliary programs. One of the auxiliary programs cal-

culates the acoustic modal properties of the cabin, two

other programs the structural modal properties of the fuse-

lage, and a fourth the propeller noise field.

The acoustic modes are calculated with the program CYL2D which

-7-



determines the two-dimensional (cabin cross-section) modal

characteristics (floor present), conditions the results and

writes the data on a file (tape) for recall by the main

program. PAIN uses the data to generate the complete three-

dimensional modal set required for the noise predictions.

The structural modal data are generated with a program called

MRPMOD whose output is also to a file (tape) read by PAIN.

In addition to its own input data, MRPMOD reads two files

(tapes) that are used for output from the fundamental struc-

tural program MRP. MRP computes the mode shapes and reso-

nance frequencies, and must be run twice, once for the symme-

tric modes and once for the antisymmetric modes. The two

files (tapes) created by these runs are read by MRPMOD, which

conditions these data for PAIN.

As stated, the propeller noise data must be calculated with

a propeller noise prediction program, such as the NASA

Langley PROPFAN (7) program or that of ANOPP (8). This aux-

iliary program is not part of PAIN as are the programs CYL2D,

MRP, and HRPMOD.

Section 4.0 of Ref. (2) should be consulted for an expanded

overall program description with accompanying flow chart.

Sections 5.0 and 6.0 of Ref. (2) deal with the input data re-

quirements and control cards.

2.3 Report Organization

In this report, comparisons are first made between predictions

and measurements from a set of scale model experiments. Next

consideration is given to the application of the PAIN program

to real aircraft, and to the development of utilization

schemes that Will allow its efficient use on a full scale

-8-



airplane. Comparisons are then made between PAIN predictions

and flight test results for a particular propeller-driven
airplane.

-9-



3.0 SCALE-MODEL TESTS AND COMPARISONS

The tests considered in this section provide results for the

most direct type of comparison of PAIN predictions and

measurements. All of the basic elements of the analytical

model are present in the test hardware and the test rig.

Nothing is present that does not have an analytical counter-

part. The PAIN model (Figure I) is a propeller excited seg-

ment of a cylindrical fuselage stiffened by rings and string-

ers, with an integral stiffened floor and sidewall trim

(lacking wings and empennage). This is exactly the descrip-

tion of the scale-model hardware and test configuration

shown in Figures 4 through 7.1 When PAIN is applied to real

aircraft, the problem of fuselage modeling must be addressed;

effects of non-uniformity of cross-section, presence of wings

and empennage, etc., may need to be examined. Here, how-

ever, a simple question is asked: "How good are the in-

terior predictions given that the computer creates counter-

parts of all elements of the test?".

In the present tests, the propeller tones are much higher

around the propeller plane than near the end caps. The

transmission to the interior is overwhelmingly dominated by

sound passing through the cylinder wall. Because of this,

the tests are free of problems introduced by the end caps.

It is evident that the tests simulate, in a realistic physi-

cal manner, the transmission of propeller noise into an air-

plane cabin. The basic physical mechanisms of propeller tone

transmission are, in fact, being duplicated in the test. It

I Illustrations of tests and hardware based on sketches

provided by C.M. Willis, NASA Langley Research Center.

-10-
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is reasonable, therefore, to expect good predictions with PAIN

only if good physical modeling has been achieved, i.e., with

respect to the coupling of the propeller pressure field with

the sidewall and sidewall with the trim. Also the sidewall

and floor response must be properly predicted and their cou-

pling to the interior _acoustic space adequately described.

The rapid decay of the pressure field away from the propeller

plane leads to the above conclusions.

3.1 Test Configuration

The test configuration is shown in Figure 4. The fuselage

and propeller are located downstream of a duct that supplies

air to simulate airplane forward velocity.

3.1.1 Fuselage 2

The fuselage (Fig. 5) is a cylinder 1.83m (72 in.) long and

1.02m (40 in.) in diameter. The skin is 0.00081m (0.032 in.)

thick and is stiffened by eighteen (18) stringers spaced on

20 ° centers. The stringers are90 ° angles having dimensions

of approximately 0.00953 x 0.00953 x 0.00051m (3/8 x 3/8 x

0.020 in.). They are riveted to the inside of the skin and

pass through cut-outs In eight (8) internal ring frames that

are spaced along the cylinder every 0.2m (8 in.) The frames

are aluminum channels with dimensionsof approximately 0.016

x 0.038 x 0.00081m (5/8 x I-I/2 x 0.032 in.).

The floor of the cylinder (Fig. 6) consists of a 0.00081m

2 Most of the descriptive information in this section

can also be found in Appendix E of Ref. I.

-15-



(0.032 in.) plate stiffened by supports of the same thickness

spaced every 0.2m (8 in.). The supports extend downward from

the floor to the bottom of the cylinder. There are also two

floor beams (channels of the same dimensions as the cylinder

ring frames) that run longitudinally, each located approxi-

mately 0.14m (5.5 in.) from the center of the floor. The

width of the floor is 0.848m (33.4 in.) leading to a floor

angle _o of 56.6 degrees (see Fig. I). The outer edge of

the floor is bolted to the cylinder wall. The cylinder is

closed by 0.013m (I/2 in.) thick end caps that are used to

support the cylinder in the NASA Langley propeller test rig.

The entire fuselage assembly is constructed of 2024-T3

aluminum.

3. I. 2 Trim

The end caps are lined (inside) with one layer of 0.0127m

(I/2 in.) thick Owens-Corning PF-I05 Fiberglas having a

density of 9.61 kg/m 3 (0.6 ib/ft 3) with a O.O0005m (0.002

in.) thick vinyl film facing. The circumference (or side-

wall) is lined with four layers of the same material; three

layers between frames and the fourth covering the frames.

The unfaced surface of the fiberglass insulation is exposed

inwardly. The finish trim is a sheet of epoxy/fiberglass

material with properties of a National Electrical Manufac-

turers Association (NEMA) G-IO (equivalent to Mil. Spec.

18177, GEE). The thickness is 0.00079m (0.032 in.) and its

surface mass is 1.465 kg/m 2 (0.3 lb/ft2). The trim is hard

mounted to the floor and attached to the rings by nine soft

mounted screws (Fig. 7). A 120 ° sector of the trim surface

is covered with a sheet of vinyl (similar to automobile up-

holstery) of the same thickness. The total weight of the

trim is 6.58 kg (14.51 lb) with a surface area of 3.624 m 2

(39 ft 2) which averages out to 1.815 kg/m 2 (0.371 lb/ft2).
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The 120° sector of vinyl on the trim simulates a similar treat-

ment in a well-known light aircraft. Its presence introduces

a small (and undesirable) discontinuity in the surface weight

of the trim but benefits the test by providing some damping

of the hard epoxy/fiberglass trim. The PAIN model is de-

signed to include a dissipative trim lining.

3.1.3 Propeller

The propeller is a three-bladed, 0.3 scale Hartzell for a

Twin Otter aircraft with a diameter of 0.76m (30 in.). It

is driven by a 30 kw (40 horsepower) variable speed electric

motor capable of turning it up to 8000 rpm. The propeller

blades are Series 16 airfoils. The clearance between the

blade tip and cylinder wall is 1/10 of the propeller diameter

or 0.076m (3 in.). In all tests the blade pitch is fixed at

20 ° .

3.2 Description of Tests 3

The primary tests of concern here are those where the interior

noise was measured as the propeller turned at different speeds.

In the present study, three speeds are considered: 3000,

4000, and 5000 rpm. The airflow velocity in all three cases

is 23.8 m/s (78 ft/sec), or about 46 knots.

In the propeller tests, with the model fuselage in place, the

only acoustic measurements were of the sound levels inside the

cylinder. These were taken with an array of eleven (11) micro-

3 Tests reported herein were performed at NASA Langley

Research Center.
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phones spaced along a cylinder diameter to represent measure-

ments over equal annular areas (Figure 8). The array was

positioned at four axial stations, _/L = 0.125, 0.375,

0.625, and 0.875, representing the center of four subvolumes

(segments) of the interior. At each of the four axial sta-

tions, there were 49 sampled locations obtained by position-

ing the array at $ = 0° +51 5° and +103 ° (Note, for all
' i • --

tests, the angle _ in Figure 8 was 90 o . _ and ¢ in Figure

8 are not to be confused with PAIN 0 and ¢ of Figure 2.)

A total of 196 measurement locations were sampled from which

the space-average interior levels are obtained for each har-

moni c.

Supplementary tests were performed to assist in diagnostic

work related to the determination (and/or evaluation) of PAIN

input data and intermediate output. The PAIN program pres-

ently uses propeller noise predictions made for a free field

condition, then applies a correction to account for the cylin-

der's presence. This is done because the blocked pressures

are not available from present propeller noise prediction

programs (it is the author's understanding that NASA Langley

has begun work on this problem; PAIN can be easily modified

to accept the new type data when available - see Section 3 of

 ef. (2)).

Free field measurements of the propeller noise field were

made to compare against the PAIN propeller noise input data

created with ANOPP. This was done to permit the determination

of the extent of "biasing" of interior noise predictions by

inaccurate exterior noise predictions from ANOPP. Figure 9

shows the test configuration. Measurements were made (with

the cylinder absent) for the three propeller speeds used in

the interior noise tests. The microphones were positioned

such that predicted and measured data along the grid line

-18-
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=I of Figure 3 could be compared.

A 0.508m (20 in.) diameter hardwood cylinder with flush-

mounted microphones in its surface was used to measure

blocked pressure levels along the grid line I-I to de-

termine the increase in sound pressure levels arising from

surface reflections (the fact that the hard cylinder is

only one-half the diameter of the model fuselage is probably

not too serious a problem for measurements taken along _ =I ).

The test configuration is shown in Figure 10.

Finally, measurements were made of acoustic and structural

loss factors. As usual for these types of measurements,

data are spotty, generally taken at whatever frequencies

they could be reliably interpreted and generally unidenti-

fied with respect to particular modes.

3.3 Measurement Results

3.3.1 Loss factors

Acoustic and structural loss factors for the outfitted model

fuselage are given in Table I. All of the numbers are based

on reverberation decay times of terminated excitation tones.

The decay of the sound level inside the model fuselage's

cabin determined the acoustic loss factor, Un" The struc-

tural loss factors of the fuselage skin and of the finish

trim are given respectively by _ and _T" The loss factors

are computed using the relation

=2.2/fT60

where f is the frequency of the excitation and T60 is the

time for a 60 dB decay.
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Table I. Measured Acoustic and Structural Loss Factors

Cabin
i

Freq.

(Ez)

(Micro.) Trim (accel.) Fuselage (accel.)

Freq. T60
T6o Freq. _60 "T

sine (Hz) trim (Hz) panel

93 1.2

115 0.61

142 0.46

192 0.27

289 0.40

301 0.21

377 0.53

452 0.19

512 0.33

655 0.37

702 0.13

755 0.058

865 0.048

932 0.094

942 0.078

1010 0.15

1260 0.11

1355 0.10

1700 0.10

1755 0.04

1770 0.021

1965 0.029

2000 0.032

2OOO O.O08

2037 O.018

2162 0.017

5625 0.089

5725 0.034

_n

|

0.020

o.o31

0.033

0.042

0.019

0.034

0.011

0.025

0.013

O.OO9

0.024

0.050

0.053

0.025

0.029

o.o15

0.016

o.o16

o.o13

0.031

0.059

o.o38

0.034

0.137

0.060

O.O6O

O.O04

0.011

45 0.462 0.105

88 0.442 0.056

110 0.091 0.219

170 0.065 0.199

216 0.065 0.156

290 0.065 0,116

4O0 0.065 0.085

500 o.039 0.113

650 0.o35 0.097

825 0.o42 o.o63

1oo0 0.o3o 0.o73

115o 0.o21 o.o91

14o0 0.027 0.058

15oo 0.025 0.059

18oo o.o14 0.087

2100 0.032 0.015

2300 0.015 0.064

2800 0.015 0.052

3400 0.019 0.034

4100 0.038 0.014

4600 0.023 0.020

127 0.30" 0.057

500 0.041" 0.1o7

890 0.043 0.057

1345 0.031" 0.053

1465 0.o41 0.037

2337 0.047 0.020

2710 0.026* 0.031

4225 o.o17" o.o31

. ring and stringer

* stringer
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3.3.2 Proweller noise

The measured free field propeller noise levels are shown in

Figures 11 through 13. The data are for the grid line _=I

as previously noted in Section 3.2. In the figures, the

plotted values are one-third octave band levels for those

bands in which the propeller blade passage frequencies and

their harmonics lie. These are to be considered the true

tonal levels where it is evident that the tones clearly

dominate (for instance near the propeller plane). Broad-

band noise appears to be present in measurements at large

distances from the plane of rotation. Figure 14 shows a

typical measured spectrum. Comparison of measurements in

Figure 14 with _ the data plotted in Figure 13 (Run No. 8113,

Microphone I), shows that the peaks correspond to the third-

octave levelsat least out to the fourth harmonic.

Phase measurements that were made in the 4000 and 5000 rpm

cases are shown in Figures 15 and 16. The arrows indicate

the approximate phase differences measured with microphone

pairs (1,3) and (2,3) in runs 8112 and 8113.

3.3.3 Interior sound levels

Sound pressure levels at the blade passage frequencies and

their harmonics are given in Tables 2, 3, and 4. The interior

measurements were analyzed in one-third octave bands and the

band levels for those bands containing the tones were taken as

the tonal levels. The first three harmonics were sufficiently

high on the inside to clearly dominate the broad-band noise

background. Narrow band analyses of a few records indicated

that the fourth and higher harmonics were so far down in the

noise that data for those harmonics were defective. Figure 17

shows a typical interior spectrum illustrating the problem with
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Table 2. Interior Measurements -

3000 RPM, Harmonic No. I (150 Hz) _

Sound Pressure Level, dB re 20 #Pa

Run

8018

21

24

27

30

x3/R p

+1.17

_° M I M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9 M IO

-1o3 82 83 85 83 83 83 83 83

-51.5 83 84 85 86 86 87 87 87 80 80

o 80 80 80 79 79 * 79 79 81 82

51.5 78 77 75 73 71 71 70 70 82 82

1o3 77 77 76 77 77 78 78 79

M
11

14

11

8

5

I

-.03 -103 76 76 * 78 79 79 * 82

-51.5 73 73 * 77 79 79 * 81

0 75 72 71 69 69 69 * *

51.5 78 78 79 79 80 79 * 80

103 80 81 81 82 83 83 * 85

79 81 *

• 81 *

• 78 *

51

48

42

33

-1.23 -103 78 79 79 80 82 82 82 *

-51.5 75 74 75 76 77 78 80 81

0 77 76 76 75 74 74 75 75

51.5 80 81 81 81 82 82 82 83

103 80 81 82 82 82 83 83 84

* 82 83

* 84 86

* 81 82

54 -2.43 -103 80 81 82 82 83 83 84 84

57 -51.5 81 82 83 84 85 86 86 86 * 81

60 0 80 80 _ 80 79 79 79 79 78 80 82

63 51.5 79 77 76 75 74 73 72 * 80 81

66 103 78 78 78 79 79 79 80 80

82

83

81

160 Hz Band

* = data judged to be of poor quality and discarded
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Table 2. (Continued). Interior Measurements -

3000 RPM, Harmonic No. 2 (300 Hz)*

Sound Pressure Level t dB re 20 ,Pa

R_.n

8018

21

24

27

3o

14

11

8

5

I

x3/R p
+1.17

-.03

_o MI M2 M3 M4

-103 62 65 72 65

-51.5 61 65 66 68

o 48 54 58 6o

51.5 62 65 67 66

103 66 70 71

-103 68

-51.5 61

0 68

51.5 68

I03 69

M 5 M 6 M 7 M 8 M 9 MIO M11
64 63 62 60

68 69 69 69 67 70 *

57 * 58 57 64 65

69 67 68 67 60 62 *

72 7272 73 73

67 * 62 64 62 * 70

61 * 61 61 61 * 61

68 68 69 69 70 * *

66 66 67 66 67 * 67

69 69 68 68 66 * 63

61 61 *

• 72 *

• 67 *

51

48

45

42

33

- 1.23 -IO3 52 51 51 51 52 51 51 *

-51.5 51 51 52 52 52 52 52 52

o 64 68 69 70 71 71 71 72

51.5 62 62 62 62 62 62 62 62

I03 54 54 56 58 64 61 63 65

* 62 62

* 64 67

* 58 60

54

57

6O

63

66

-2.43 -103 61 61 61 61 61 61 61 61

-51.5 60 59 64 67 68 69 69 69 * 74

0 64 72 75 76 78 78 78 79 76 78

51.5 62 65 68 69 71 70 71 * 74 76

103 69 68 68 67 66 66 64 62

73

79

77

315 Hz Band
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Table 2. (Concluded). Interior Measurements -

3000 RPM, Harmonic No. 3 (450 Hz) _

Sound Pressure Level, dB re 20 ,Pa

Rw1

8018

21

24

27

30

x3/R p

+1.17

_o MI M2 M3 M4 M5 M6 M7 M8 M9 MI 0 MI I

-103 50 47 63 45 47 49 50 50

-51.5 51 50 52 53 52 54 54 54 51 49 *

0 50 44 44 48 52 * 53 54 52 50 *

51.5 51 50 50 51 54 53 53 53 51 52 *

103 52 48 51 53 55 56 57 58

14

11

8

5

I

-.03 -103 47 45 * 51 55 55 * 54

-51.5 51 52 * 54 56 54 * 55

0 49 45 47 51 52 52 * *

51.5 50 45 46 49 53 52 * 53

103 54 53 52 51 53 55 * 61

54 53 *

• 47 *

• 51 *

51

48

45

42

33

-I .23 -103 44 50 54 56 55 58 58 *

"51.5 46 49 52 54 56 57 57 58 * 55

0 44 42 45 48 50 52 51 52 * 55

51.5 44 50 54 56 59 58 57 57 * 50

103 51 50 51 51 51 51 52 52

57

55

54

54

57

6o

63

66

-2.43 -103 48 45 48 51 54 55 56 57

-51.5 51 52 52 52 53 53 56 53 * 52

0 50 48 46 44 47 49 49 51 51 49

51.5 48 44 45 48 50 50 51 * 48 49

103 51 48 45 44 47 45 46 47

54

5o

52

* 500 Hz Band
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Table 3. Interior Measurements -

4000 RPM, Harmonic No. I (200 Hz) _

Sound Pressure Level, dB re 20 uPa

Rtln

8019

22

25

28

31

_o M I M2 M3 M4 M5 M6 M7 M8 M9 M I0 M II

-103 87 92 * 94 95 96 96 97

-51.5 88 91 92 92 93 93 93 93 80 87 91

0 76 81 84 86 87 * 90 91 71 70 *

51.5 77 82 84 85 86 85 85 85 86 90 *

103 87 91 93 93 94 94 94 95

15 -.03 -103 84 86 * 87 88 87 * 91

12 -51.5 87 88 * 90 91 90 * 90 87 90 94

9 0 85 86 * 87 87 88 * 89 * 87 *

6 51.5 86 83 87 77 74 75 * * * 87 91

3 103 87 90 92 93 94 94 * 95

52 -1.23 -103 87 89 89 90 _ 90 89 89 89

49 -51.5 87 89 90 91 91 92 92 92 * 89 91

46 0 86 87 87 88 89 90 90 91 * 86 85

43 51.5 82 76 65 79 83 84 86 87 * 87 87

34 103 87 91 * 94 95 96 96 97

55 • -2.43 -103 80 83 85 85 85 86 85 85

58 -51.5 79 86 88 90 91 91 92 92

61 0 82 85 87 88 89 89 90 90

64 51.5 85 89 90 92 93 94 94 *

67 103 85 90 92 93 94 94 95 96

84 87 89

77 78 79

67 74 77

200 Hz Band

!i

,p
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Table 3. (Continued). Interior Measurements -

4000 RPM, Harmonic No. 2 (400 Hz)*

Sound Pressure Level, dB re 20 .Pa

Run

8019

22

25

a8

31

x3/R p

+1.17

_o MI M2 M3 M4 M5 M6 M7 M8 M9 MI 0 MI I

-103 62 68 * 78 79 79 81 80

-51.5 72 75 78 79 79 81 80 81 75 79 76

0 70 71 71 70 65 * 71 71 74 76 *

51.5 64 73 79 82 84 84 85 86 67 74 *

103 72 73 75 78 79 80 81 81

15

12

9

6

3

-.03 -103 73 69 * 69 75 71 * 71

-51.5 72 75 * 79 79 78 * 69 75 70

0 72 72 * 75 75 77 * 78 * 78

51.5 74 74 81 77 78 79 * * * 78

103 74 70 70 71 73 73 W 79

65

76

52

49

46

43

34

-I .23 -103 77 77 78 79 78 80 80 80

-51.5 72 67 76 79 81 82 84 84 * 66

0 76 76 77 77 74 79 77 78 * 81

51.5 75 72 71 73 75 72 74 76 * 82

103 68 70 * 82 82 84 85 86

68

82

82

55

58

61

64

67

-2.43 -103 78 78 81 82 84 85 85 85

-51.5 74 75 81 84 86 86 86 86 85 84

0 77 75 75 75 75 76 76 76 85 84

51.5 77 79 83 85 86 87 87 * 80 80

103 79 77 80 82 82 84 85 85

86

84

82

* 400 Hz Band
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Table 3. (Concluded). Interior Measurements -

4000 RPM, Harmonic No. 3 (600 Hz) _

Sound Pressure Level, dB re 20 _Pa

8019

22

25

28

31

_o M1 M2 M3 M4 M5 M6 M7 M8 M9 MI 0 MI I

-103 64 62 * 59 62 65 66 67

-51.5 63 62 62 63 65 67 68 68 57 62 65

0 64 61 56 50 56 * 62 64 59 61 *

51.5 62 61 60 60 60 60 58 56 63 64 *

103 59 60 60 61 62 65 67 69

15

12

9

6

3

-.03 -103 59 60 * 64 64 64 * 63

-51.5 64 61 * 59 62 62 * 64 68 69 71

0 69 67 * 66 66 66 * 67 * 66 *

51.5 67 62 68 69 72 74 * * * 56 61

103 68 67 70 64 65 66 * 72

52

49

46

43

34

-I .23 -103 66 64 63 64 66 68 69 69

-51.5 67 67 66 _ 65 65 63 63 63 * 62 61

0 63 60 58 57 58 61 63 67 * 65 64

51.5 61 64 67 68 69 70 70 69 * 65 63

103 61 60 * 57 57 62 65 68

55

58

61

64

67

-2.43 -103 65 64 63 62 63 64 64 64

-51.5 66 66 65 64 64 64 65 65

0 65 64 61 58 57 59 61 62

51.5 60 57 62 65 67 68 69 *

103 52 54 51 54 58 62 63 65

64 64 64

67 69 68

64 65 64

630 Hz Band
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Table 4- Interior Measurements -

5000 RPM, Harmonic No. I (250 Hz) _

Sound Pressure Level, dB re 20 _Pa

Run x3/R p _o M I

8020 +1.17 -103 86

23

26

29

32

M 2 M 3 M 4 M 5 M 6 M 7 M 8 M 9

93 97 97 98 98 98 98

-51.5 92 99 102 101 101 102 103 103 97

0 90 94 97 98 98 * 100 100 92

51.5 95 97 99 100 101 101 101 101 83

103 98 101 103 103 104 103 103 103

MIO M11

101 *

95 *

92 *

16 -.03

13

I0

7

4

-103 90 * * 100 102 101 * 102

-51-5 * * * * * * * *

0 85 91 * 94 95 95 * 95

51.5 94 95 * 95 94 94 * *

103 99 102 104 105 105 105 * 105

96

95

53 -I.23 -103

5O

47

44

35

80 * 94 96 98 98 100 100

-51.5 92 99 99 100 100 101 101 101

0 91 97 99 100 101 101 101 101

51.5 89 85 85 77 81 83 * *

103 87 90 * 104 104 * * *

102

97 98

56 -2.43 -103 86

59 -51.5 93

62 0 92

65 51.5 94

68 103

* 94 96 96 97 97 *

98 100 102 102 103 103 104 99

97 100 101 * * * * *

96 98 99 100 101 102 102 *

99 101 104 105 106 106 106 106

102 103

97 97

* 89

250 Hz Band
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Table 4. (Continued). Interior Measurements -

5000 RPM, Harmonic No. 2 (500 Hz)*

Sound Pressure Level, dB re 20 _Pa

8020

23

26

29

32

_o MI M2 M3 M4 M5 M6 M7 M8 M9 MI 0 MI I

-103 90 81 77 83 87 90 91 91

-51.5 94 92 92 89 88 87 87 88 89 75 *

0 93 84 82 91 94 * 97 97 88 81 *

51.5 94 92 92 91 92 91 92 92 89 79 *

103 90 81 81 84 87 89 89 89

16

13

I0

7

4

-.03 -103 86 * * 87 88 86 * 96

-51.5 * * * * * * * *

O 79 80 * 91 93 94 * 94

51.5 83 85 * 89 90 91 * *

103 80 62 85 83 85 86 * 90

* 87 *

* 81 *

53

50

47

44

35

-I .23 -!03 89 * 86 88 89 90 92 90

151.5 91 88 82 84 87 89 90 90

0 91 88 88 91 92 94 94 94

51.5 91 92 93 93 94 94 * *

103 80 75 * 89 91 * * *

* 90 *

* 89 89

56

59

62

65

68

-2.43 -103 96 * 74 87 92 94 95 *

-51.5 99 97 95 93 91 90 90 90

0 99 91 84 96 * * * *

51.5 99 97 95 93 91 90 88 87

103 96 87 75 87 92 93 94 94

95 74 91

* 82 70

* * 91

500 Hz Band
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Table 4. (Concluded) _ Interior Measurements -

5000 RPM, Harmonic No. 3 (750 Hz)*

Sound Pressure Levell dB re 20 _Pa

R_

8020

23

26

29

32

x3/'R p

+1.17

$o MI M2 M3 M4 M5 M6 M7 M8 M9

-IO3 71 64 71 67 69 70 72 71

-51.5 74 75 73 70 70 70 71 73 73

0 77 75 73 73 76 * 78 79 65

51.5 76 74 71 72 74 75 75 74 59

103 74 71 71 75 77 78 78 78

M
I0

69

71

71

M
11

16

13

I0

7

4

-.03 -I03 63 * * 64 66 67 * 70

-51.5 * * * * * * * *

0 76 73 * 67 72 75 * 78

51.5 79 76 * 74 77 78 * *

103 77 74 74 75 77 79 * 83

75

64

53

5o

47

44

35

-1.23 -103 73 * 72 74 76 78 77 78

-51.5 77 72 68 70 75 78 80 80

0 77 74 70 67 68 70 70 71

51.5 75 69 65 66 71 75 * *

103 61 65 * 67 68 * * *

63

77 78

56

59

62

65

68

-2.43 -I03 71 * 65 64 66 67 68 *

-51.5 75 73 69 64 68 71 72 72

0 74 71 68 72 * * * *

51.5 69 67 68 70 71 72 73 73

103 69 64 65 68 70 71 72 73

75 72

69

74

72

71

* 800 Hz Band
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the higher harmonics.

Space-average sound pressure level (Harmonic H)

PAIN predicts the interior space-average sound pressure level

for each harmonic. The equivalent measured interior space

average needed for comparison, and the standard deviation of

the mean square pressure are given below.

S-_H= 10 log(Kp2> H, t/p 2)

where the space-average mean square pressure for harmonic H is

N

<Pi>s, t=(
3

V is the volume of the cylinder above theofloor (or if data

for some sampled subvolumes Vj are considered bad and not

used, the total volume of all subvolumes Vj used, i.e., V =

_Vj). N is the number of subvolumes with good microphone

data.

In the present case

Vj O.014LR 2 for microphones I through 8, @ _I03 ° _51.5 °,= = , 00

= O.014LR 2 for microphones 9 through 11, $ = 0 °

= O.O07LR 2 for microphones 9 and 10, $ = _51.5 °

= 0.0225-LR 2 for microphone 11 when $ = _51.5 °

In the relations above,

2 H 2 10SPLS/10
<Pi>S=Po"

SPL_= Sound pressure level measured in

subvolume j, harmonic H

po = reference pressure =2x10-5nt/m2(20_Pa).
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The standard deviation of the mean square pressure is defined

by
N

2 H 2H 2_SH=I( I/N- I)_(<Pi>j-<Pi >s, t )

j=1

Since the sampled subvolumes Vj are not identical the mean

and standard deviation are calculated in the following

• manners. Let

_=( I0 sPLH/IO. IO-6)/LR 2Vj-

Define RH as the average over N subvolumes of XHJ

N N N

j=1 j=1 j-1

Also let the primed quantity be defined

a ,
where V is the average subvolume's volume

N

J=l

Then the measured mean sound pressure level (average in space)

for harmonic H is given by the exact result

S_H=60+1Ol°g RH "

The standard deviation is defined and computed with

N

J=1

The above is a sufficiently close approximation to the true

sample standard deviation.
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Finally, set

.

The (I-a)% confidence intervals of the space average sound

pressure level at harmonic H are computed by using xH and sH:

SPLI"a=60+ 101og(EH+sHtm;a/2/_ )

\

where tin;a/2 is the a/2 percentage point of the Student

t - distribution with m = N-I degrees of freedom. In the

present case, a value of a equal to 0.01 is selected and

the 99% confidence limits computed.

Figures 18, 19, and 20 show the axial variations of the

average sound pressure levels in the four major (axial)

subvolumes sampled. Note that very little axial variation

is present, however, the third harmonics of _ the 4000 and

5000 rpm cases do have a slightly apparent peak near the"

propeller plane.

Table 5 summarizes the reduced interior noise levels. Fig-

ure 21 gives the same results in graphical form. It is the

basic plot upon which the PAIN predictions can be directly

overlaid.

3.4 Com_uter Simulation of Scale-Model Tests

This section begins with a brief discussion of some of the

details of the modeling of the fuselage and trim. Next the

propeller modeling requirements are considered. Then the

ANOPP propeller noise predictions used as input data to the

PAIN program are scrutinized.
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99_ Confidence Limits
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=
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N 7o

55
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B

Subvolume 1 Subvolm,,e 2 Subvolu,,,e 3 Subvolume 4

-'---- _-- _ .... H= 1

H z

o. /

• I l,
........... --.-- H=3

e/t = O. 125 O. 375 O. 625 O.875

x3/R p 1.17 -0.03 -1.23 -Z.43

FIGURE 18. AXIAL VARIATION OF AVERAGE SOUND PRESSURE
LEVEL BY MAJOR SUBVOLUME (3000 RPM)
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100

95

90

R 85

= 8o
t

_ 7S

_- 70

|
_ 65

55

Subvolme 1

\\\

99% Confidence Limits

Subvolul 2 Subvoltme. 3 Subvolume 4

H=I

1t=2

H=3

I I I I ! I I

e/L = 0.125 0.375 0.625 0.875

x3/R p = 1.17 -0.03 -1.23 -Z.43

FIGURE 19. AXIAL VARIATION OF AVERAGE SOUND
PRESSURE LEVEL BY MAJOR SUBVOLUME (4000 RPM)
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99Z Confidence Limits

105

100

95

== 85
a

=_

_- 75

|
70

65

6O

I

Subvolmm 1 Subvol_ 2 Subvol cme 3 Subvol ume 4

I I I I I I I
e/L = 0.125 0.375 0.625 0.875

x3/9 p = 1.17 -0.03 -1.23 -2.43

FIGURE 20. AXIAL VARIATION OF AVERAGE SOUND PRESSURE

LEVEL BY MAJOR SUBVOLUME (5000rpm)
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Table 5. Measured Space Average Sound Pressure Levels,

Entire Cabin Space (Above Floor)

RPM _ Harmonic, H Freq. (Hz) SPL H SPL

3O00 I 150 81.0 80.2-81.7

2 300 69. I 67.1-70.4

3 450 52.9 51.8-53.8

4000 I 200 90.3 89.3-91.0

2 400 80.3 79.1-81.1

3 600 65.2 64.2-65.9

5OOO I 250 IO0.2 99 •3- 100.9

2 500 91.5 90.3-92.4

3 750 74.0 72.9-74.9

* calculated mean

99% confidence that true mean lies in this band
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3.4.1 Fuselage modeling

The scale model fuselage is basically the same as the analyti-

cal model, having ring frames and stringers on the shell and

longitudinal and transverse floor beams as stiffeners. As

part of the input data file for the program MRP, there are

four quantities to be specified that are used in the calcula-

tion of the modes of the stiffened shell and which define the

characteristics of the stiffeners: Dxs, the bending rigidity

of the shell stringers divided by the stringer spacing; DR0 ,

the bending rigidity of the shell frames divided by the frame

spacing; Dxp, the bending rigidity of the longitudinal floor

beams divided by the floor beam spacing; Dyp, the bending

rigidity of the transverse floor supports divided by the

support spacing. The procedure to be followed to calculate

these quantities is: I) compute the moment of inertia of a

single stiffener about the inner surface of the shell (or

lower surface of the fleer), 2) multiply by the elastic

modulus, and 3) divide by the stiffener spacing. The calcu-

lation of the moment of inertia of a transverse floor beam

(support) requires special attention.

Figures 5 and 6 show that the transverse floor beams (supports)

extend from the bottom of the floor down to the shell frames

where they are attached. It is assumed that about 0.038m

(1.5 in.) of the total depth of the support actually provides

bending rigidity to the floor. This is arbitrarily chosen

sincethe longitudinal floor beams are themselves 0.038m (1.5

in.) deep and because part of the floor support provides stiff-

ening to the shell since it is attached to the frame. This is

admittedly an unknown complicating factor in the test which is

assumed not to be serious, as the upper part of the shell is

felt not likely to be overly restrained by the actual supports

!
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as compared to their assumed (computer) configuration.

The input data for the model fuselage (required by programs

MRP and MRPMOD) are given in Table 6. In addition to the

data shown,the floor must be specified (alphamerically) as

being rigidly connected to the shell.

Also given in Table 6 are the input data for programs CYL2D

and PAIN. In the latter case, the table is used to specify

sources or models used. For instance, no measurements were

made of the structural loss factors of the bare fuselage

(i.e., without trim), so a simple model was assumed (_r=2/fr).

The measured values of W r with trim installed, i.e., _ are

given in Table I and since PAIN computes the loss factors

with the trim installed, a comparison of predictions with

measurements is possible and will be presented later. The

acoustic loss factors are taken as zero to force PAIN to

compute them.

The trim panel mass per unit of area has two values shown.

The first corresponds to the total mass of the trim divided

by the surface area (including as part of the mass, the 120 o

sector of vinyl) amd the second the mass per unit of area

locally where the propeller blade tip passes nearest the

structure and where the most intense exterior sound is real-

ized. The latter value is selected as the more correct one

to use although either value leads to approximately the same

final result. The trim loss factor is set to 0.13 which is

the average value of the measured WT (trim installed) over

the frequency range of interest. The properties of the fiber-

glass insulation are those in Figure A-2 of Appendix A in

Ref. (I). Finally, the cavity length is slightly larger than

the shell's because of the construction.
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Table 6. Input Data Used To Simulate

Scale Model Tests

Pro gram Description Input Value

MRP

MRP, MRPMOD

MRP, MRPMOD
PAIN

MRP, MRPMOD
CYL2D, PAIN

DxS , bending rigidity of
shell stringers di-
vided by stringer
spacing

_e' bending rigidity of
shell frames divided
by frame spacing

Dx_, bending rigidity o f
longitudinal floor
beams divided by
beam spacing

bending rigidity of
transverse floor
supports divided by
support spacing

t s, equivalent skin thick-
mess of shell (includ-

ing smeared-out stiff-
ener areas)

tp, equivalent thickness
of floor (including
smeared-out stiffener

areas)

ms_

mp,

shell mass per unit
area including smeared-
out stiffener masses

floor mass per unit
area including smeared-
out stiffener masses

a_

L,

radius of shell

length of shell

eo, floor angle

62.35 nt-m

1.20xiO 4 nt-m

8.63x103 nt-m

5.42xi03 nt-m

0.001153 m

0.00127 m

3.113 kg/m 2

3. +6 kg/m2

0.508 m

I.803 m

56.6 °
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Table 6. (Continued). Input Data Used To Simulate

Scale Model Tests

Pro gram

PAIN

Description Input Value

Wr_
structural loss factors 2/f

of bare fuselage (assure- r

ing a mode exists at the

resonance frequency, fr )

acoustic loss factors of 0.0

bare fuselage

roT, trim panel mass per unit
area

WT, trim loss factor

L c, cavity length

rp, propeller radial location

Zp, propeller axial location

, propeller circumferential
location

B, number of blades

Direction of rotation

1.82 kg/m2
(I._6)

0.13

I.829 m

O. 962 m

0.662 m

9oo

3

(counter-clockwise, looking aft) +I
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3.4.2 P roweller modeling

The propeller is located radially and relative to the front

of the structure by rp and Zp (see Figures I and 2). The

circumferential position is given by $ (Figure 2). Table 6

shows the values corresponding to those of the test. The

direction of propeller rotation is defined as counter-clock-

wise because the top half of the cylinder is swept by the

blade tip before the bottom half (or floor).

The grid (Figure 3) is positioned by placing the propeller

at k=8. In the present test rig, each grid point (k,L)

lying in the fuselage surface has coordinates defined by

the equivalence relation

(k,_') (xl/ .t k,X2,X 3)

where (in meters) :

,

and

_3=O.622-0.089(k-I)

This grid covers all of the upper quarter surface of the cylin-

der forward of the propeller and a somewhat greater surface area

behind it.

Because of the lengthy calculations involved in the propeller

noise prediction programs, the data for the lower quarter of

the cylinder seen by the propeller are obtained from the data

for the top quarter with the relation (imagining an identical
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grid below the centerline) ORIGINAL PAC.._ '/i
OF POOR QUALF: _

,__,_,_,_=__,-_,_- _ ,
where Tk£ is a time delay given in milliseconds by the result

Tkj=333.33akz/N •

N is the propeller rpm and ak# is in degrees and is given by

the result
-\

The propeller harmonic amplitudes at corresponding points

above and below the centerline are given by

and the corresponding phases (in degrees) are related by

o ovo
where T I = BPF -I is in milliseconds and H is the harmonic

index. This can also be written as

_Hk_ Ibelow=_HkL[ above+2BHak#

where B is the number of propeller blades.

Conversion to the coordinate system used in Figures I and 2

is with the relations

zk=Zp-_3
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ORIGI_AL PAC_ ;7

and (using @ = _/2 in Fig. 2) OF POOR QUALITY..

_=_12*tan.-II-X_rp--__ i_I}= ¢+(_-I)-_118 .

The coordinates of the grid point (k,_) are given by the

equivalence statement

i

~ (a,el,zk) .

The selected grid has spacing A of 0.089m (3.5 in.). This

spacing is sufficiently close to assure a relatively smooth

change in phase for each propeller harmonic from grid point-

to-point.

The free field propeller noise predictions needed at the

grid points were made with NASA _NOPP (8). The predictions

for the 3000, 4000, and _OO rpm cases were computed at NASA

Langley and provided to the contractor. As required for

PAIN input, the predictions are the Fourier representations

of the actual pressure time histories (the first 10 harmon-

ics are used). Section 3.4 of Ref. (I) should be consulted

for an expanded discussion of the input model. As stated

previously, after being read-in, the free field pressure

amplitudes of the various harmonics are increased in propor-

tion to the incidence angle 7 (Figure 2) to simulate the

blocked pressures. The phases computed with the propeller

program are not modified.

Creation of the input data with the propeller noise program

is a separate problem not of concern in this report. However

the quality of the predictions made with that program is of

concern due to the potential for introducing bias errors in

PAIN predictions. Appendix E of Ref. (I)presents a basic

overview of the requirements for input data to the ANOPP pro-

gram and it should be consulted for any further basic informa-
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tion. Appendix B of Ref. (I) deals with propeller noise

theory and should be referred to if a more in-depth treat-

ment of propeller noise predictions is desired.

In the present tests, the data used to define the particular

geometrical characteristics of the propeller are proprietary

and thus are not included. It is simply noted here that the

angle of attack, chord, and blade thickness are specified as

a function of the distance out along the pitch change axis

via a data list which is then interpolated as required to

fix these variables at all locations on the blade.

Figure 22 shows (for an example) a typical predicted pressure

time history and the corresponding PAIN model used. The par-

ticular case shown, from the 5000 rpm run, is the pressure at

grid location _,_) = (7,1). It represents only one of 160

such time histories in the PAIN input data file.

3.4.3 Propeller noise predictions and comparisons

There are two fundamental questions concerning the exterior

pressure field that have to be answered before comparison of

interior predictions should be attempted. First, are the

free field propeller noise predictions made with ANOPP rea-

sonable, when compared to the measurement results of Section

3.3.2? Also, are the predicted blocked pressures correct?

Equation (43) of Ref. (I) is the PAIN model used to adjust

free field pressures to blocked pressures. Is it a good

representation?

To answer the first question, consider the propeller noise

predictions in Tables 7, 8, and 9. Results for the grid

line _= I are given (first 5 harmonics only, although 10 har-

monics are available). The sound levels in these tables are
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Table 7. ANOPP

0.762

Harmonic

H k=1

I 90. I

2 57.0

3 24.2

4 -8.1

5 5.3

ORI_AL pAGE _S

OF POOR QUALITY

Predictions of Propeller Noise, Grid Line 2 =

m Dia., 3 Bladed Hartzell Propeller @ 3000 rpm

Sound Pressure Level, dB re 20 #Pa

2 3 4 5 6 7 8

95-5 1OO.5 106.3 112.1 117.4 120.2 114.9

66.2 74.9 85.1 95.6 105.5 112.5 108.3

37.0 49.2 63.9 78.9 93.5 104.8 101.9

7.8 23.6 • 42.6 62.3 81.5 97.0 95.8

10.8 16.7 27.5 46.7 69.7 89.4 90.0

Phase, _H (degrees)

I

2

3

4

5

-148.1 -151.2 -153.6

-144.2 -148.3 -151.4

-146.1

-142.3

-148.5

-147.1 -149.4

-142.5 -145.6

-151.4 -152.9

-155.8 -157.4 -158.0 -153.9 -86.1

-154.4 -156.8 -158.3 -155.7 -92.1

-152.6 -155.8 -158.1 -156.7 -97.7

-150.0 -!54.2 -157.6 -157.4 -103.3

-152.3 -153.5 -157.2 -158.0 -108.7

Harmonic

H

I

2

3

4

5

i

I

2

3

4

5

Sound Pressure Level, dB re 20 NPa

k=9 10 11 12 13 14 15 16

119.3 116.0 110.6 104.8 99. I 94.2 89.0 84.3

110.4 102.9 92.8 82.3 72. I 63.5 54.4 46.3

101.5 89.7 74.9 59.9 45.3 33.0 20.3 9.0

92.6 76.5 57.1 37.4 i8.5 2.8 -12.8 -24.8

83.7 63.5 40.9 23.8 14.8 9.5 4.2 -.5

Phase, $H (degrees)

-27.6 -24.1 -24.8 -26.5 -28.7 -30.8 -33.1 -35.3

-28.5 -25.8 -27.4 -30.2 -33.5 -36.8 -40.7 -44.5

-29.6 -27.6 -30.0 -33.4 -36.8 -39.0 -39.0 -33.5

-31. I -29.8 -33.3 -37.9 -42.5 -45.3 -42.9 -31.3

-33.0 -31.8 -34.1 -31.4 -29.3 -30.5 -32.7 -34.9
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Table 8. ANOPP

0.762

Harmoni c

H

I

2

3

4

5

I

2

3

4

5

ORIGIh_'AL PAGE |9
OF POOR QUALITY

Predictions of Propeller Noise, Grid Line

m Dia., 3 Bladed Hartzell Propeller @ 4000

_= I

rpm

Soured Pressure Level, dB re 20 NPa

k=1 2 3 4 5 6

97.6 102.5 107.2 112.6 118.1 123.1

68.5 76.4 84.O 93.2 102.8 112.0

39.3 50.2 60.8 73.7 87.4 100.9

10.6 24.1 37.5 54.2 72.0 89.7

12.9 18.5 25.1 37.9 57.2 78.7
i

Phase, _H (degrees)

I -139.5 -144.9 -148.8 -152.5 -155.2 -156.4

2 -128.9 -138.1 -144.4 -149.8 -153.9 -156.5

3 -121.6 -133.1 -140.6 -147.1 -152.2 -155.9

4 -111.5 -126.3 -135.6 -143.5 -149.9 -155.0

5 -139.2 -143.4 -144.6-144.4 -148.3 -154.0

Harmonic Soured Pressure Level, dB re 20 _Pa

H k=9 10 11 12 13 14

1 124.9 121.8 116.8 111.5 106.4 102.1

2 116.5 109.5 100.2 90.7 81.8 74.6

3 108. I 97. I 83.5 69.9 57.2 47.2

4 99.7 84.8 66.9 49.2 32.7 19.9

5 91.3 72.6 51.3 33.4 23.0 17.7

Phase, SH (degrees)

-29.3 -26.1 -27.2 -29.1 -31.0 -32.2 -32.6 -31.6

-31.0 -29.1 -31.7 -35.5 -39.1 -41.2 -41.0 -37.1

-32.8 -31.9 -35.9 -41.0 -46.1 -48.7 -46.6 -37.3

-35.0 -35.1 -40.4 -47.4 -54.6 -58.9 -56.2 -42.8

-37.6 -38.2 -43.0 -42.0 -35.7 -33.4 -32.6 -31.2

7 8

125.7 120.6

118.6 114.4

111.3 108.4

104.1 102.7

96.9 97.2

-152.7 -86.0

-154.5 -92.8

-155.6 -98.8

-456.1 -104.5

-156.5 -11o.o

15 16

97.8 93.9

67.5 61.2

37.5 29.2

7.7 -2.3

13.o 9.1
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Table 9. ANOPP Predictions of Propeller Noise, Grid Line 2= I

0.762 m Dia., 3 Bladed Hartzell Propeller @ 5000 rpm

Harmonic

H

I

2

3

4

5

Sound Pressure Level, dB re 20 HPa

k= 1 2 3 4 5 6 7

104.5 108.9 113.1 118.1 123.2 127.8 130.2

80.1 86.9 93.5 101.4 109.9 118.1 123.9

56.1 65.2 73.9 84.7 96.4 108.2 117.4

32.6 43.8 54.6 68. I 82.9 98.3 110.9

18.4 27.2 37.9 52.4 69.7 88.4 104.5

8
|

125.5

120.0

114.6

109.4

104.5

Phase, SH (degrees)

I -126.7 -135.2 -141.5 -147.1 -151.4 -153.7 -150.4 -85.1

2 -98.2 -116.6 -129.5 -140.4 -148.1 -152.8 -152.0 -93.4

3 -68.6 -98.1 -118.2 -134.4 -145.2 -151.9 -153.1 -100.1

4 -37.6 -78.7 -106.6 -128.4 -142.1 -150.6 -153.7 -106.2

5 -110.1 -101.7 -109.5 -125.6 -139.4 -149.2 -153.9 -111.8

Harmonic Sound Pressure

E- k=9 10 11
i

I 129.7 127.0 122.5

2 121.9 115.8 107.8

3 114.2 104.6 93. I

4 106.6 93-5 78.3

5 98.9 82.4 64.0

Level, dB re 20 HPa

12 13 14 15 16

117.9 113.5 109.9 106.2 102.8

100.0 92.9 87.1 81.3 75.9

82. I 72.4 64.8 56.9 49.6

64.3 52.2 42.6 32.6 23.3

48.0 36.4 29. I 23.0 18.3

Phase, SH (degrees)

I -31.0 -27.8 -28.5 -29.2 -28.7 -26.7 -22.5 -16.1

2 -34.4 -32.9 -35.3 -36.7 -34.4 -28.1 -16.0 0.8

3 -37.1 -37.3 -41.8 -44.2 -39.8 -28.5 -7.8 19.5

4 -40.2 -41.9 -48.7 -52.6 -46.3 -29.8 -0.3 38.0

5 -43.7 -46.4 -54.3 -55.4 -42.5 -27.5 -16.5 -11.1
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plotted in Figures 23, 24, and 25 against the measurements of

Figures 11, 12, and 13.

In general it can be stated that the comparison is good for

the first three harmonics, certainly near the propeller plane

where the tones rise well above the broad-band noise. Al-

though the measurement and grid (prediction) positions do not

correspond precisely, it is observed that, at least in the

4000 and 5000 rpm cases, within 0.25m ( 10 in.) either side

of the propeller plane, the predictions are quite good.

There is some indication that the propeller noise predictions

might exceed the actual levels either side of the propeller

plane. This cannot be confirmed because measurements were

not made at those locations.

The phase predictions (given in the tables) are plotted in

Figures 26, 27, and 28. Measurements are available for com-

parison in the 4000 and 5000 rpm cases. The phase itself

cannot be compared, but the phase difference _mm' between

grid points m and m'. This is the quantity required when

calculating the modal forces (see Eq. (41) of Ref. (I)). In

Figures 27 and 28, the predicted phase differences are indi-

cated between those positions (along grid line 2= I) where the

microphones were located in Runs 8112 (4000 rpm case) and

8113 (5000 rpm case) which produced the phase measurements of

Figures 15 and 16. As can be seen the calculated phase dif-

ferences and the measured phase differences compare quite

well for the first three harmonics (within 10 to 15 degrees

usually).

In summary, it can be stated that ANOPP certainly does a good

job of predicting the exterior field. '_/hile there are indica-

tions that the levels may be over-predicted slightly in the

regions just fore and aft of the propeller plane, there is no
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way of proving it from the available data. It is reasonable,

at least until future measurements can disprove the assump-

tion, to take the free field predictions as being correct.

Blocked Pressures

To answer the question about the PAIN model used to adjust

free field levels to blocked levels, it is necessary to

briefly review the basic type of prediction given by Eq. (43)

of Ref. (I). If _ (Fig. 3) is zero, the b_ocked pressure is

6 dB greater than the free field. The ratio remains close to

6 dB for _ less than or equal to about 30 ° , drops only slight-

ly to 5.75 dB at 50 ° , 5.4 dB at 60 ° , 4.75 dB at 70 ° , 3.3 dB

at 80 ° and finally to zero at 90 o . For all practical pur-

poses, the predictions are then for a 5 to 6 dB increase for

measurements within a propeller radius either side of the

propeller plane along the grid line _=I.

How much do the pressures actually increase? Figure 29 gives

measurement results from the free field and blocked pressure

tests (Figures 9 and 10) that show that the pressures increase

(near the propeller plane) anywhere from 3 to 4 dB. As one

moves away from the plane of rotation the reflection effects

appear to dissipate faster than the PAIN model predicts. This

implies that perhaps the PAIN model (which is based on some

measurements by Magliozzi (9)) should be modified. However

the data base is not a large one, and the measurements are

not for the same diameter cylinder used in the interior noise

study.

Next, the measurements on the hardwood cylinder can be com-

pared to the present PAIN predictions made using the ANOPP

free field calculations (Figure 30). The predictions are

basically the data in Table 8 increased by 6 dB. These clear-
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ly show an overprediction.

For consistency with the measurements Of Figure 29, the PAIN

predictions can be modified to limit the increase to 4 dB

(instead of 6 dB). For convenience these predictions are

also shown in Figure 30.

3.5 Test Comparisons

"\

The propeller noise blocked pressure model is temporarily

assumed to be suitable as originally programmed in PAIN. To

begin, the acoustic and structural loss factors (which are

an intermediate output from PAIN) can be compared with meas-

urement data (Table I). It is necessary first to concentrate

on the structural damping model and to correct certain de-

ficiencies known to be present in it.

\

3.5.1 Structural dam_ing

As previously noted, the structural loss factors of the fuse-

lage modes are calculated for the particular trim installa-

tion. For structural mode r, the loss factor is _ , and is_r

calculated with Eq. (82) of Ref. (I). That equation has been

found to be slightly defective.

Modification of Wr 4

In Appendix A of this report, it is shown that _ of Eq. (82)

should be given by

_= ____m__+_- 2 r '
mrW r

i

4 Nomenclature used below is consistent with that of

Ref. (I).
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where mr replaces m of the original result, and

=ram /M x
r r r •

X
M r is the total modal mass and M r is given by

r=_x r2
M x m_(X) d_

X being the sidewall area covered _th trim. The above change

is necessary because the original analyses in Refs. (I) and

(6) inadvertently led to calculations of structural loss fac-

tors premised on total coverage of the model fuselage by

trim, and also failed to take into account the fact that signi-

ficant modal energy of lower order structural modes could be

in axial and circumferential stretching motion of the skin

(non-bending). The PAIN programming change required is given

in Appendix A.

Intermretation of PAIN output

Predicted structural loss factors (output by PAIN) are to be

taken from the "Structural Modes" list only. Loss factors,

ETA R', listed following "Band-Average Loss Factors" and next

to "Trim Factor, dB" are averages over the bands indicated

and are wholly fictitious where no modes exist. For the

scale-model, the predicted first structural mode is 188.5 Hz

and no band average should be shown below 200 Hz.

ComDarisons

Predicted loss factors and measurements are compared in Fig-

ure 31. The calculated (band average) values shown are

heavily weighted at the low end of the modal spectrum by the
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loss factors of the floor modes (PAIN predictions are that

the scale model fuselage has mostly floor modes at the low

end of the modal spectrum). The predicted lowest bona fide

shell (cylinder wall) mode is 301.9 Hz. Calculated values

of the structural loss factor for the lowest few shell modes

are given by the solid circles. Basically the sidewall modes

have (predicted) damping values that begin _rith the solid

circles in the range 0.2-0.3 and follow the solid circles and

the averages on out to 5000 Hz. These predictions are satis-

factory when compared to'measurements in the frequency range

of interest.

' asFinally, it is noted here that the modification of W r ,

detailed previously, alleviates the need to arbitrarily limit

its value at low frequencies as assumed in Appendix E of Ref.

(I). Also Fig. 31 of this report is the corrected version of

Fig. E-15 of Ref. (I).

3.5.2 Acoustic loss factors

The measured and predicted acoustic loss factors are shovm in

Figure 32. The calculated band average values are plotted

upon the scattered individual measurements from Table I. Pre-

dictions are considered satisfactory. Certainly the acoustic

loss factor prediction model needs to be applied to a number

of different types of trim installations before the quality

of the model can be ascertained.

Figure 32 also shows the predicted acoustic loss factors for

a heavily damped (almost critically damped) trim lining.

Damping is seen to suppress the tendency to predict the up-

ward excursion at about 250 Hz. This is the frequency where

the trim model predicts a resonance of the lining on the in-

sulation (see Ref. (6) for some examples of similar predictions).

-74- °



OR'GI_! pAGE

OF POCR QUALITY

0.5 B

0.2

0.1

,,_ 0.05

._J

t,.1
(ml

I,-,

8
o.oz

0.01

0.005

0.002

• Aal 
• &A

A! • A •
_ • • I I

mid

A• I t t •

• REA_i_ED

• CALCULATED(BANDAVERAGE), nT =o. ].3
I CALCOLATED (AUqOST CRITICALLY DAMPED TRIR)

I I 1

20 50 100

FICURE 32.

I I I I I

200 500 1000 2000 5000

Frequency, I_

PREDICTED AND MEASURED ACOUSTIC
LOSS FACTORS

I

10000

-?5-



Since the trim transmission loss is also at its predicted

maximum negative value, there remains a question as to whe-

ther or not this predicted behavior should be suppressed by

choosing a large WT" An answer will be given after the inter-

ior noise predictions are examined.

3.5.3 Interior sound levels

Figures 33 and 34 give the predicted interior sound levels.

They are plotted on the measurements from Figure 21 (and

Table 5). In both cases the input data used are from Table 6.

However the original PAIN blocked pressure model (that of a

6 dB increase) was used for the predictions in Figure 33 and

the pressure increase was limited to 4 dB in Figure 34. This

latter model is more consistent with the results of Figure 29

and thus the latter predictions are those that will be com-

pared with the measurements. The differences between the

predictions and the measurements that are plotted in Figure

34 are shown in Table 10.

Statistical Evaluation

Of interest is whether there is a statistically significant

difference on the average between the predictions and measure-

ments. Stated another way, are the predictions biased? To

determine this, the differencesA i, i = I, 2, ..., n between

the _redictions and the measurements are computed and their

mean A and standard deviation s determined. Next a standard

hypothesis test is performed (10). The hypothesis is that

the true mean difference _A ( _is its estimator) is zero, i.e.,

Ho:#A=O •
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Table 10. Predicted Versus Measured Space

Average Sound Pressure Levels

RPM

i

3000

Harmonic

H

Freq. _--_H (dB )

(Hz) Predicted* Measured"
A i

I 150 63.3 81.0 -17.7

2 300 66.2 69 • I -2.9

3 450 59.5 52.9 6.6

4O00

SO00

I 200 91.7 90.3 1.4

2 400 78.2 80.3 -2.1

3 600 71.3 65.2 6.1

I 250 86.4 1oo.2 -13.8

2 500 91.1 91.5 -0.4

3 750 75.7 74.0 1.7

* From Fig. 34, WT=O. 13

- From Table 5
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Here the sampling distribution of 4 is

=Stn_i/_

where tn_ I is the Student "t" variable with n-1 degrees of

freedom. For a two-sided test at the a level of signifi-

cance, _ must fall within the acceptance region given by

-Stn_ 1 ;a/2/_ _ _<_ Stn_ 1 ;a/2/_i _

In the present case, the region of acceptance will be taken

quite narrow by first selecting a = 0.1. Selection of this

high level of significance increases the possibility of a

so-called Type I error where the hypothesis may be rejected

when in fact it is true.

The hypothesis test is performed a number of different ways.

First, all of the'data are pooled providing a sample size

n = 9 (3 rpm x 3 harmonics). The sample mean and standard

deviation are computed to be

_= -2.32 dB ; s= 8.32 dB .

For the two-sided test at the a = 0.1 level of significance

t8;0.05 = 1.86 ,

and the acceptance region for the hypothesis is

-5.15 .

Since the sample mean _ (= -2.32 dB) falls within the accept-

ance region, the hypothesis is accepted. It is also accepted
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if the level of significance is increased to

(Table 1I).

a = 0.2

Next the hypothesis is tested by considering the data for

each propeller speed and harmonic separately. In these

cases, the sample size is n = 3 and t2;0.05 = 2.92. The

values of A and s and the acceptance regions are given in

Table 11. Results for a = 0.2 level of significance are

shown for these tests also.

For the test where all nine datum are considered, there is

not a statistically significant difference on the average

between predictions and measurements. However, there is a

substantial random error indicated by a standard deviation

of 8.32 dB. A discrepancy of more than 8 dB can be expected

for about one out of three predictions.

When the test is performed by rpm, the hypothesis is accepted

in all cases. However, there is also significant random

error.

Testing by harmonics leads to acceptance of the hypothesis

for H = I, and rejection for H = 2 and H = 3 at the highest

level of significance (each test by harmonic leads to accept-

ance at a lower level of significance say a = 0.05). Rejec-

tion of the hypothesis for H = 2 and H = 3, is an admission

of bias being present. However the sample mean error and

standard deviation are small.

If data for H = 2 and H = 3 are pooled (n = 6), the hypothesis

is accepted even at the a = 0.2 level of significance.

Discussion of Results

Although the hypothesis tests have led to the conclusion that
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Table 1I. Sample Statistics and Acceptance Regions

for Interior Sound Levels (Table 10)

Hypothesis
Test
on

Sample Level Ac c ept anc e
Statistics o f Region

Significance (+dB)
_(dB) s(dB) a -

All 9 datum

(3 rpm x 3

harmonics)

3000 rpm

(3 harmonics)

4000 rpm

(3 harmonics)

5000 rpm

(3 harmonics)

H= I

(3 propeller

speeds)

H=2

(3 propeller

speeds)

H=3

(3 propeller

speeds)

H=2 + 3

(3 propeller

speeds)

8 datum

(H= I , 3000

excluded)

o.i 5.15
-2.32 8.32

0.2 3.87

-4.67 12.24 0.1 20.63

0.2 13.32

+1.8 4.38 0.1 7.36

0.2 4.76

-4.10 8.47 0. I 14.27

0.2 9.22

0.1 16.99
-10.0 10.09

0.2 10.98

- I.8 I. 28
0.1 2.15

0.2 I .39

O. I 4.33
-4.86 2.58

O.2 2.8O

+i .53 4.o8

Accept?

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

O. I 3.40 yes

0.2 2.46 yes

0.1
rpm -0.4 6.41

0.2

4.28

3.20

yes

yes

-82-



there is some bias in the predictions, the error that has

been identified is not large and is considered an accept-

able error at this time (after flight comparisons, its

acceptability will be re-examined). The large random

error is due to inaccurate predictions of the interior

levels at the blade passage frequencies. Now a discrepancy

of 4 or 5 dB might (barely) be tolerated for one out of

three predictions, but 8 or 9 dB cannot be tolerated. To

determine whether further modifications are necessary (be-

yond those of Appendix A), it is necessary to closely exam-

ine PAIN predictions.

Appendix B contains the basics of the PAIN output for the

three propeller speeds. The first 48 structural modes are

listed (out of 300 total used); also the first 48 acoustic

modes (out of 400 total). The distribution of modes in one-

third octaves is then given. Next the calculated trim

properties are presented. The Trim Factor, dB, is a trans-

mission loss (negative implies an increased transmission).

Following these data the propeller noise input is tabulated

for the first three harmonics. Data input for the grid of

Figure 3 are used to create the data for the large (16 x 19)

grid as discussed in Section 3.4.2. Note L=#+9, so the data

for J=1 to 10 of Figure 3 are found in L=IO through 19.

The tone transmission predictions come next followed

by a tabulation of the five highest contributing pairs of

acoustic and structural modes that make up the predictions.

The propeller noise data and the interior predictions for the

3000, 4000, and 5000 rpm cases are given in sequence.

The lowest computed structural mode occurs at 188.5 Hz. From

the values of the generalized mass, it can be seen that this

is a floor mode since most of the contributing energy is in

the floor (the output of MRP can be used to see the mode shape
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if desired). Note that the first true cylinder (shell) mode oc-

curs at 301.9 Hz, followed by another at 318.7 Hz and another at

346.7 Hz and 470.5 Hz, etc. Since the first harmonics (blade

passage frequencies) occur at 150 Hz, 200 Hz, and 250 Hz, al___l

shell (sidewall) _ modes are being driven below their resonance

freauencies (wrimarily because the model cylinder is too short)

and reswond in "stiffnesslike" fashion for H=I. However, the

frequencies of the second and third harmonics are at 300 Hz or

above and in these cases, resonance and mass controlled struc-

tural modes are usually dominant contributors.

Consider the cases for H=I. Floor modes dominate transmission

at 3000 and 4000 rpm. The shell mode at 301.9 Hz is contribu-

ting substantially at 5000 rpm, as is another shell mode (num-

ber 8) at 318.7 Hz. Both are stiffness controlled.

The H=2 cases are as follows: At 3000 rpm, the shell mode at

301.9 Hz is resonant and dominates the transmission. A mass

controlled shell mode at 346.7 Hz dominates at 4000 rpm. A

mass controlled mode at 470.5 Hz dominates at 5000 rpm. The

latter mode has significant sidewall and floor motion.

The H=3 cases (all rpms) are a "mixed-bag" in that the predic-

tions are dominated by structural modes having significant side-

wall and floor motion.

Now consider the predicted trim TL. Note that at 150 HZ it is

about -7 dB, at 200 Hz, -17.3 dB, and at 250 Hz, -4.8 dB. The

large negative value might at first appear to cause the predic-

tion for H=I (at 4000 rpm) to be better than it would have been

had this behavior not been predicted. However the trim model

compensates for this and when the resonance effect is forced to

disappear by increasing UT, the prediction for the 4000 rpm, H=I

case changes only slightly (as will be seen shortly).
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Note the acoustic mode dominating the transmission. For H=I at

4000 rpm, it is mode 3 (q=2,i=O) at 187.6 Hz. This mode domi-

nates only for small UT" Also note that acoustic modes 6, 7,
and 8 have • very high loss factors (0.6-0.7). These high loss

factors will be predicted only when and where the trim reso-

nance is predicted. Now if _T is increased significantly, say
too 2, the trim resonance effect will disappear (the trim TL

changes to +1.2 dB at 160 Hz, +4.6 dB at 200 Hz, and +8.7 dB at

250 Hz). Simultaneously, the high values of the acoustic loss

factors of modes 6, 7, and 8 will fall. Un is reduced to 0.088
for mode number 6, 0.077 for mode 7, and 0.081 for mode 8. More-

over, with the larger UT' the prediction for H=I at 4000 rpm is
dominated by the response of modes 7 and 8 (not 3 anymore). Yet

even with these dramatic differences, the predicted interior

level is about the same (91.2 dB as opposed to the original 91.7

dB) .

The predicted results for the case of NT=2 are given in Figure
35 and Table 12. As can be seen the errors (compared to those

in Table 10) remain about the same. However the H=I, 5000 rpm

prediction is significantly better. As before, the H=I, 3000

rpm prediction has the largest discrepancy. This particular da-

tum is unique in that the blade passage frequency lies in a re-

gion where non-resonant behavior of the cavity is necessary (150

Hz lies between the first and second acoustic modes). It is not

felt to provide a good test for the PAIN model, and for this

reason, the H=I, 3000 rpm datum is tossed out. The other eight
remain (a case could probably be made for throwing out the data

for all of the H=I cases because of the known difficulty of mak-

ing predictions in the stiffness-controlled region).

Now when the hypothesis test is performed on the data in Table 10

(with the H=I, 3000 rpm datum excluded), the mean error and stand-

ard deviation are found to be

_=-0.4 dB ; s = 6.4 dB ,
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RPM

Table 12. Predicted Versus Measured Space

Average Sound Pressure Levels

H armoni c SP--TH (dB)
_.

H Predicted" Measured l

3OOO I 62.1 8_.0 -18.9

2 65.5 69. I -3.6

3 56.9 52.9 4.0

4000 I 91.2 90.3 0.9

2 73.8 80.3 -6.5

3 67.4 65.2 2.2

SO00 I 92.9 100.2 -7.3

2 89.6 91.5 -I .9

3 74.0 74.0 0.0

W T =2.0 to suppress predicted trim resonance
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and the acceptance region is +3.2 dB at the_=0.2 level of

significance. The hypothesis is still accepted, and the

random error is almost tolerable. Performing the hypothesis

test on the data of Table 12 with the H=I, 3000 rpm datum

excluded, the mean error and standard deviation are found to

be

A=-1.5 dB ; s = 4.05 dB ,

and the acceptance region (fora=0.2) is +2.0 dB. In this

case also the hypothesis is accepted. Moreover here, the

random error is felt to be (barely) tolerable (s=4 dB).

It can now be safely stated that the PAIN model seems to work. _

It has done a reasonably good job of predicting the scale-

model test results, and its testing in application to real

aircraft isneeded next.

i
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4.0 PROGRAM UTILIZATION: FULL SCALE AIRCRAFT

Capabilities and limitations of the PAIN software for flight

predictions in the case of real aircraft are considered in

this section. Basically the focus here is on learning about

some of the types of problems that a user will be confronted

with when a particular aircraft is selected for study. As

will be shown, PAIN has some limitations. But in many re-

spects these are not major problems for the user. The soft-

ware is capable of making predictions for practically any air-

craft configuration. There are limits as to the number of

propeller harmonics that should be attempted, and there are

circumstances where the propeller noise field on the fuselage

may decay too slowly (spatially, away from the propeller plane)

for the user to be assured that a valid prediction is being •

made.

4.1 Modeling of the Aircraft

A useful approach to the modeling of an aircraft is to begin

with a sketch such as shown in Figures 36, 37, or 38. Here

three aircraft are used to illustrate the type of geometric

information that must be generated. For instance, the length

of the fuselage cylinder must be defined. This can be taken

as the actual length of the cylindrical section. It should be

kept in mind that there is room for judgement here. It may be

confirmed in the future that the cylinder should be longer than

the cylindrical section of the fuselage (i.e., that better pre-

dictions will be made if it is assumed to be). But presently

this length is chosen on the premise that details pertaining to

the termination of the cylinder are going to wash out in the

frequency range where the tone transmission is of concern.

That is, some errors in the modal characteristics in the low

frequency range will be accepted, assumed inconsequential as to
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their effects at the blade passage frequency and its harmonics.

After the length L is determined, the remainder of the infor-

mation will be fixed by the aircraft configuration. The loca-

tion of the •propeller, given by the radius rp, angular position

, and axially by z is to •be specified. These parameters are

exactly the same as _efined in Figure 2.

The three aircraft shown have been chosen to illustrate the

ranges of parameters which will likely confront the user.

In most circumstances the propeller will be larger in diameter

than the fuselage. This will almost always be true whenever

there are only two engines (propellers), and will lead to a

limitation on the allowed range of the propeller tip clearance.

The PAIN software is designed to take the propeller noise sig-

natures over a grid that covers a length of the fuselage equal

to 15_ , where _ is given by _a/18, and a is the fuselage

cylinder radius. For the busimess aircraft shown in Figure 36,

the grid length is 0.24L or 0.82Dp. For the small body air-

craft of Figure 37, it is 0.23L (0.82Dp) and for the narrow

body aircraft of Figure 38, the grid length is 0.21L (1.30Dp).
The optimum is to have a long grid length, i.e., as a percent-

age of both L and Dp. Over the length of the grid, it is

desirable to have a significant decay in the sound pressure

levels (at each harmonic) to assure that most of the acoustic

energy is being taken into account. The grid length is fixed

by the radius of the fuselage, thus when the propeller diameter

is significantly larger than the diameter of the fuselage,

there is conceru that the propeller noise field may not decay

rapidly enough over the length of the grid. This concern is

aggravated by the fact that the cylinder length to diameter

ratio ( L/D ) of a typical fuselage (cylinder) is in the range

between about 5.3 and 6.3, and thus the grid is never going to

cover more than about 20-25% of the length of the fuselage

cylinder. To top this off, the decay of the propeller field on
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the fuselage is highly dependent on the propeller tip clearance.

Consider the airplane in Figure 36. The diameter of the pro-

peller is more than a meter larger than the diameter of the

fuselage. The tip clearance is 0.165m or 0.06 Dp. The se-

lected grid location, with the axial index k=8 lying in the

propeller plane (i.e., k=kp), puts the forward-most position

on the grid at x3=7_ or 1.02m (0.38 Dp). The aft-most posi-

tion is x3=-8_ or -1.18m (-0.44 Dp). Figure 39 shows that the

overall sound level at the forward-most grid point (k=I,_=I) _

can be expected to be about 10 or 11 dB below that at the pro-

peller plane. At the aft-most grid point (k=16,_=I), it can

be expected to be 13 or 14 dB below the level at the propeller

plane. But if the tip clearance is increased to 0.2 Dp these

values would drop to only 4 dB and 6 dB respectively (see

Figure 37). Thus if the tip clearance exceeds about (0.2 to

0.3).Dp, the PAIN model probably should not be used. However

this is not an unhendable rule. The spatial decay of the

overall level as plotted versus tip clearance in Figure 39 is

usually dominated by one harmonic (the blade passage frequency).

The 2rod and higher harmonics will decay more rapidly. Figure

39 can be used as a guide to gain some insight into the likely

nature of the computed propeller noise field. However, ulti-

mately, the predictions made with the propeller noise program

must be used to determine if sufficient spatial decay is pres-

ent.

The axial location of the grid is to be selected such that the

peak overall sound level occurs as near to the center of the

grid as is possible. In the turbo-prop circumstance, since the

tip clearance is limited to about 0.2 Dp to 0.3 Dp, the grid

should be located with the axial index kp set to 8 or 9. The

entire grid must be located on the fuselage cylinder, thus

there is a requirement that _.(kp-1)<Zp.
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For instance, in Figure 36, kp must be 8 or less. Since kp =

8 (or 9) is optimum, the choice is 8 in this case. For the

aircraft of Figure 37, kp could be selected as high as 13 and

the grid would still remain entirely on the cylinder. However

again the optimum value is 8 or 9, so 8 is the selected value.

In a Propfan configuration, the tip clearance will be in-

creased significantly because the exterior levels will be so

intense. The tip clearance shown in Figure 38 is 0.8 Dp. At

the flight Mach number M = 0.8, the peak overall sound pressure

level will occur aft of the propeller plane. Reference 12 has

been used to predict that the axial location of the peak level

will be x3 = -0.4 Dp. Predictions are that the exterior levels

for the Propfan configuration will decay more rapidly than for

a turbo-prop. In the present circumstance, the decay is ex-

pected to exceed 10 dB at the extremes of the grid even though

the tip clearance is quite large. In this particular case, in

order to center the grid about the peak overall level (i.e.,

have the peak lie somewhere between k = 8 and k = 9), a value

of kp = 4 is selected.

The noise signatures (Fourier amplitudes and phases for each

harmonic) are to be computed at the 160 grid points as given

in Section 3 of Reference (2). That calculation completes the

description of the exterior pressure field required by the PAIN

program.

4.2 Modeling for Cabin and Fuselage Modes

The next step is to determine the modal properties of the fuse-

lage (both the structural and the acoustic properties).

4.2. I Cabin

The 2-dimensional (cabin cross-sectional) modal properties are
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computed with the program CYL2D. That program requires the

floor angle 80 as an input. Figure 40 shows typical cabin

cross sections such as might correspond to the three aircraft

being studied here. In the cases of the small body and

narrow body aircraft, the floors extend from sidewall to side-

wall. The intersection of the floor surface (or its extension)

with the sidewall skin defines the floor angle. CYL2D computes

the mode shapes in 2-dimensions for a cylinder with floor parti-

tion having unit radius. Thus the cabin diameter is of no con-

cern until the PAIN program utilizes the CYL2D output file.

Business aircraft such as that of Figures 36 and 40 typically

have a rather small diameter and a recessed aisle. In the

present case a floor angle of 50 o is selected because 70% of

the floor surface is at the level defined by 80=50 o . More-

over, when the structural modes are computed, the cabin sidewall

surface should match the cabin space. In the present case, the

cabin floor lays over frames with webs extending downward to the

shell. Thus it is desirable to model the shell-floor juncture

as rigid at the floor line, i.e., to place the floor at 50 ° .

Since the angles 0o appearing in the acoustics program CYL2D

and the structural program MRP must match, 500 is the best over-

all compromise.

The headliners and baggage storage (shown in phantom in Figure

40) are ignored. Presently CYL2D cannot handle these details.

4.2.2 Fuselage

The next step is to prepare the input data for the program MRP.

Table 13 contains the ty_e of structural information that is

/

i"
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needed. Typical values of section properties are given which

allow comparisons between the smaller and larger aircraft.

Structural details of fuselage and floor stiffening elements

are required before the type of data in Table 13 can be gen-

erated. Stiffener properties, skin thicknesses, shell and

floor surface densities, and seating arrangements are needed.

Note in the table that there will almost always be a variation

in the fuselage skin thickness. Some value t s must be chosen,

and an average is recommended.

Usually the shell frame and stringer properties and their

spacings If and I s will be uniform. The stiffener cross-sec-

tional areas AS and A s are used with the spacings to determine

the equivalent shell thickness, i.e.,

t = ts+AR/lf+A/1 se

The shell surface density (including skin and stringers) is then

m=Pte, where p is the mass density of the material (it is

assumed that skin and stiffeners are of the same material).

The moments of inertia of the frames and stringers are to be

computed about the inner surface of the skin. The values given

in Table 13 are for the typical stiffeners shown in Figure 41.

The shell bending rigidities are defined by

D o=EIf/1f ; Oxs=EIs/ls "

The floor properties are similarly computed, however, there is

usually going to be a greater degree of flexibility in the

modeling of the floor because many of the floors are not free

standing (do not run unsupported from sidewall to sidewall).

In the business and small body aircraft, the floor is normally
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built over webs formed by increasing the depth of the shell

frames. In the case of the business (smallest) aircraft, the

assumed properties of the transverse floor beams are based on

the material depth beneath the aisle floor, that is, that which

remains after material already assigned to the shell frame is

excluded. In the present case, the floor frame depth is taken

to be 0. I05m (refer to Figure 40).

The transverse floor beams on the small body aircraft (which

can be properly described as extensions of shell frames) should

be assumed to have a working depth (below the floor) no greater

than the height of the frame web above the shell skin required

to yield the frame stiffness. Simply define the floor frame

(transverse beam) such that its stiffness equals the shell

frame stiffness. Once the floor stiffness gets that large, it

should not matter that there may yet remain some uncertainty as

to its actual working stiffness.

Generally properties of longitudinal floor beams should be de-

terminable from drawings. For the small and narrow body air-

craft here, they are simply taken to be roughly equivalent to

the shell stringers. Intercostals should be accounted for as

increased mass and stiffness (i.e., thickness)of the floor

plate if necessary.

In actual case of narrow body aircraft, where the floor extends

sidewall to sidewall, floor stiffeners (beams) should be iden-

tifiable from drawings. Table 13 contains some estimates of

their section properties.

The business aircraft is complicated by the presence of the

aisle. The longitudinal floor beams here are assumed to be the

walls of the aisle (0.14m high) with thickness of 1.02mm and

an average spacing of 0.43m. This leads to a very stiff floor
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( fore-to-aft).

The bending rigidities of the floor stiffeners are given by

Dyp=EI/ly ; Oxp=EI_l x ,

and the equivalent floor thickness is

tPe = tp+A_lx+A/ly

Program MRP will accept both the equivalent floor thickness and

the floor surface mass per unit of area. The latter is

m = ptPe

i.e., if there is no dead weight on the floor. The dead weight

of seats must be added when seating is present since the seats

are rigidly attached to the floor or to the supporting floor

structure. The passenger load is assumed to be dynamically

isolated.

On the business aircraft of Table 13, 11 seats have been assumed

at 8.62 _kg/seat (19 lb/seat). The distributed surface mass be-

comes 13.66 kg/m 2 (as opposed to 4.18 kg/m 2 without seats). In

the case of the small body aircraft, 13 seat rows with 3 seats

per row (19 lb/seat) yields a floor mass of 19.68 kg/m 2 (as

opposed to 5.29 kg/m 2 without seats). For the narrow body air-

craft, 23 seat rows with 6 seats/row increases the floor mass

to 23.64 kg/m 2 (as opposed to 7.83 kg/m 2 without seats). The

seating mass per unit of area is based on cabin floor area

(length L c) since this leads to the highest value of rap. The

important thing to note here is that the total dead weight of

the loaded floor when seats are present may be 2 or 3 times the

combined weight of the floor and its supporting structure. A

reasonable estimate for seating loads should be included.
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4.3 Modal Characteristics of TyDical Airplanes

The aircraft selected for the present study represent signifi-

cantly different scales in terms of size and stiffness of

fuselages. The largest aircraft conforms to a narrow body, and

it was selected because it is considered to be the largest tur-

boprop airplane likely to be encountered by a user of the PAIN

program. The two "small diameter" aircraft (small body and

business) are typical short-haul or commuter configurations.

The relative sizes of these airplanes can be Judged quickly

from Figures 36, 37, and 38, where they are drawn to the same

scale.

Modal characteristics of each fuselage (cabin and structure)

will determine the correct way to use the PAIN program. Modal

spectra will determine the maximum number of interior propeller

harmonics that can be computed and also the particular computa-

tion procedure required. The modal characteristics of larger

aircraft impose more severe requirements for vigilance on the

part of a user. Even so, it will be found that there are no

debilitating restrictions even in the case of the largest air-

craft considered herein.

4.3. I Acoustic Modes

The PAIN program creates 400 acoustic modes for use in the in-

terior noise calculations. These are constructed by combining

the CYL2D output file (resonance frequencies and mode shapes of

the twenty 2-dimensional modes (i = 0 to 19) of the cabin of

unit radius) with twenty axial modes whose index q (that de-

fines shapes and frequencies) ranges from O to 19 also. The

resulting modal array (or file) is no.__tcomplete.
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Consider, for example, the computed acoustic modes for the cabin

of the smallest (or business) aircraft (see Appendix C). The

lowest resonance frequency (q = I, i = O) is predicted to be

22.1 Hz. The last mode in the list (q = 19, i = 19) is pre-

dicted to occur at about 665 Hz. The (q = 19, i = O) mode

(No. 184) occurs at 420.5 Hz. There are modes missing in the

list (file) above this frequency. The first is the (q = 20,

i = O) mode at 442.6 Hz. Since modes of the type (q > 19, i =

O) do not appear, there are a number of modes missing in the

range between 420.5 Hz and 665 Hz, but they are widely scattered.

The (q = 19, i = I) mode occurs at 436.1 Hz. Above this fre-

quency, modes of the type (q _ 19, i = I) are missing. The

(19, 2) mode occurs at 441.3 Hz and above this frequency modes

of the type (q _ 19, i = 2) are not included, and so on. Thus

as one nears the bottom of the file (the higher frequencies),

there are more and more missing modes.

PAIN uses all of the acoustic modes in the list (regardless of

their resonance frequencies) to calculate the interior levels

for a given propeller harmonic. Usually (and as has already

been verified in the scale model studies) acoustic modes that

are resonant close to the harmonic frequency will contribute

most to the predicted interior level. As long as PAIN has

data for modes near a given harmonic, it can predict the in-

terior level using a (preferred) low frequency calculation pro-

cedure (that procedure was used in the scale model studies of

Section 3). However, if the modal information for the cavity

is not available (or incomplete), a high frequency calculation

technique must be utilized. That procedure does not rely on

the specific acoustic modal properties.

Consider then the business aircraft, and assume a blade passage

frequency of say 102 to 107 Hz. Further suppose that results

for the fifth harmonic will be sought. The highest frequency
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of concern will then be 535 Hz. The fourth harmonic could be

as high as 428 Hz. It is seen that at least four harmonics can

be computed with the low frequency procedure since the modal

list is complete up to 442.6 Hz. The acoustic modal density is

so great, that a missing mode or two (near the fifth harmonic)

would not disallow use of the low frequency procedure for the

fifth harmonic also. However knowledge of the missing data in

that region would be useful. Remember that the calculation

with the Nigh frequency procedure is always output, so it is

useful to obtain the low frequency result also whenever possible,

even when the harmonic lies in a region where the modal file is

incomplete.

Next consider the intermediate size fuselage (small body). The

cabin has its lowest acoustic mode at 14.9 Hz; the last mode in

the file is 486 Hz. The file is complete below 298.3 Hz. Thus

if the blade passage frequency is in the range of 110 Hz or so,

3 harmonics can probably be predicted with the low frequency

procedure. The fourth should be computed with that procedure

also (although it will be an incomplete calculation), and the

fifth would have to be done with the high frequency technique.

The cabin of the narrow body aircraft has its lowest acoustic

mode at 8.2 Hz. The last mode in the file is at 297 Hz. The

file is complete below 163.3 Hz. In the Propfan configuration

with a blade passage frequency of say 165 Hz, only one harmonic

can be computed with the low frequency procedure. If results

for five harmonics are desired, the remaining four must be ob-

tained with the high frequency procedure.

4.3.2 Structural Modes

The modal data file which is created with program MRP and then

conditioned with MRPMOD is needed for two purposes: (I) for
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calculating the generalized (or modal) forces _G(r,H) for the

propeller noise excitation, and (2) for calculating the struc-

ture-interior coupling functions f'(n,r). (Note: r is the

structural mode index, n is the acoustic mode index, and H is

the propeller harmonic index.)

The structure-interior coupling functions are needed in the

low frequency procedure. Calculations with that procedure are

not possible if either the acoustic or the structural modal

files do not extend beyond the harmonic frequency of concern.

But PAIN Can make an interior prediction even if the acoustic

data file is exhausted. It can bypass the calculation of

f' (n,r) by going to the high frequency procedure.

The modal forces, _G(r,H), on the other hand, must always be

computed, that is, for use in either the low or the high fre-

quency procedure. Once a harmonic is selected, the correspond-

ing modal forces (for all modes) must be computed. Although

the entire file is utilized, it is important that the file ex-

tend beyond the frequency of the harmonic being calculated.

This is required because structural modes resonant in a fairly

wide region centered about the harmonic will (likely) contribute

most to the interior levels. (This was found to be true in the

scale-model predictions of Appendix B.)

ANOPP ImDosed Limitations

The accuracy of the NASA ANOPP propeller noise prediction pro-

gram (or any other comparable program) is suspect beyond the

fourth or fifth harmonic. ANOPP should not be used to create

input data for PAIN beyond the fourth or fifth propeller har-

monic. This is not a critical deficiency. The highest ex-

terior levels will be in the lowest few harmonics and the atten-

uation afforded by the structure will be lowest at the bottom
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end of the frequency spectrum also. This means that the capa-

bilities of the PAIN program can be reasonably examined in

terms of computing, say a maximum of five interior harmonics.

Program Changes to MRPMOD

The sizes of the fuselage cylinders of concern in Table 13

suggest that a software modification be made to enhance the

potential utility and completeness of the structural modal

file, i.e., to extend it to as high a frequency as is practi-

cal. To this end, before beginning any computations, the

MRPMOD program is modified to accept an increased eigenvector

output from the program MRP, i.e., 40 eigenvectors (20 symme-

tric and 20 antisymmetric) instead of thirty. A total of 440

structural modes can then be predicted with an allowable range

of axial mode numbers M from I to 11. The number of axial half-

waves M is limited to 11 because a maximum of 450 modes can

be used by PAIN (12"40=480"450). The structural program MRP

itself need not be changed since it can be made to compute

all of the modes required simply by specifying the maximum

value of M and the number of eigenvectors desired. However,

"Dimension" statements must be changed in MRPMOD to allow it

accept the MRP output. Because of the increased size, the

new output file from MRPMOD (that to be used by PAIN) must

become a direct access instead of an indirect access perma-

nent file. This requires some changes in the control state-

ments for MRPMOD and PAIN (see Appendix A for more details).

Ty_i cal Results

The lowest structural mode of the fuselage cylinder of the

business aircraft of Table 13 is predicted to occur at 39.6 Hz

and is given in the "Structural Modes" list that is output

by the PAIN program and which summarizes the MRPMOD output file
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(Appendix C). The last mode in the file, i.e., the 400th mode

in this case (since M is limited to 10 for the present) is

predicted to occur at 2054 Hz. The corresponding results for

the small body aircraft are 23.5 Hz and 1414 Hz and for the

narrow body aircraft 13.1 Hz and 823 Hz respectively.

The predicted fundamental resonance frequencies here are con-
sidered reasonable. For instance, the narrow body fuselage

cylinder is a large aeronautical structure by almost any
measure (23m(75 ft) long by 3.75m(12.3 ft) in diameter) and

it is quite stiff. A comparable structure once considered in

noise studies was the payload bay door of the space shuttle

orbiter vehicle (4.87m diameter by 18.3m long). Analyzed by

elaborate finite element techniques, it was found to have a

fundamental resonance frequency of 7.4 Hz (modeled as an in-

complete cylinder (or sector) supported on its edges). Also
the bottom structure of the shuttle vehicle (a stiffened curved

panel) similarly analyzed had a fundamental resonance frequency

of 9.6 Hz.

The question is now raised as to whether the structural modal

files are complete over typical required frequency ranges. Air-

craft in the turbo-prop configuration will typically have the

fifth harmonic below about 550 Hz. In the Propfan configuration

this upper frequency could become 825 Hz or more. The main

question is whether a reliable prediction of modal forces can be

made up to these frequencies.

•The structural modal file is much more difficult to analyze in

terms of determining its completeness. This is because the fuse-

lage cylinder is so complicated. The modal behavior of a stiff-

ened cylinder with floor partition is much more difficult to de-

scribe than a stiffened cylinder without floor _Ref. I). As one

examines the output of MRPMOD, it is found that for many modes
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of a given axial mode index M, the same shell indexes n s will

appear (n s defines the number of full circumferential waves

of a given component of the displacement series used to de-

scribe the shell circumferential mode shape). Also, the same

indexes np (giving the number of transverse halfwaves of a

given component of the displacement series used to describe

the transverse floor mode shape) may appear as well. But

each structural mode is unique. Each has its own set of gen-

eralized coordinates that ultimately define the particular

mode shape. Each has its own generalized mass. Some of the

modes are predominantly floor modes, others predominantly

shell modes.

Business Aircraft

The modal file for the business aircraft (PAIN summary in Appen-

dix C) shows that the maximum value of M (i.e., M=IO) occurs

the first time at the 40th mode (227.7 Hz). It therefore seems

logical to assume that a mode with index M=11 will occur soon

afterward and that somewhere in the range slightly above 227.7

Hz the file must become incomplete (since M=11 is excluded).

Close examination, however, shows that the first M=IO mode is a

floor mode. Almost all of the energy of the mode is in flexural

motion of the floor. This can be recognized by examining the

generalized mass. The shell flexure, w, contributes little to

the total modal mass (about 2%). Since this mode will not re-

spond well to the propelIer excitation of the sidewall, it is

somewhat an extraneous mode (even though listed) and a compara-

ble mode with M=11 would be also.

The adequacy of the file (in the sense of completeness) is as-

sured if when either M, n s, or np reach their maximum values

(in this case M=IO, ns=14, and np=5) the mode is a genuine shell
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mode or at least has some significant flexural energy in the

shell. Going down the file, it is seen that the second time

M=IO appears is at the 48th mode (250.5 Hz) where the shell

flexural modal mass is but 0,2% of the total. M=IO occurs

again at the 72nd mode (363.4 Hz) where the shell flexural

modal mass has risen to about 24% of the total generalized

mass. Somewhere slightly above this frequency, there will be-

gin to be some modes of the type M=11 missing that should le-

gitimately be in the file. Note that by the 147th mode (at

579.4 Hz), where the M=IO index once again appears, the shell

modal mass is 89% of the total generalized mass.

There are 8 modes between the 72rid and 147th modes having M=IO,

all of which have significant percentages of their energy in

shell flexure. There will be less than 8 missing modes of the

type M=11 below 550 Hz (which is the maximum frequency of con-

cern for the business aircraft). Within a band about 100 Hz

wide centered at 550 Hz, there are 29 modes (Modes 124 through

152). There are four modes with M=IO. Thus there will be less

than four modes with M=11 missing over this range and fewer

still with M=12 (perhaps none). It is clear that even though

the file is incomplete, if the primary contributing modes to the

interior noise are selected (by the program) out of those lying

50 Hz either side of the harmonic (assumed at 550 Hz), there is

only a small chance that an M=11 mode will appear as one of the

top five contributors and only a miniscule chance that it will

be the dominant contributor. Thus, in this case, since n s and

np are well below their maximum values (i.e., in the range be-

low 600 Hz or so), the modal file can be considered sufficiently

complete.

This file can be made complete by including significant flexural

(shell.) modes of the type M=11 for frequencies below say 650 or

700 Hz. Its length can also be optimized if when M is increased
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to 11, the maximum values of n s and np are reduced to 8 and 4

respectively. These values are chosen by examining the printed

output of MRPMOD where (in the present case) the 5 terms used

in the shell displacement series (i.e., the ns'S) and the 3

terms used in the floor displacement series (i.e., the np's)

and which are passed to PAIN and used to construct the mode

shape, lie below the maximums selected. The number of eigen-

vectors computed by MRP should remain at 40 if this is done.

Small Body Aircraft

Similar results are found for the small body aircraft. Scanning

the M=IO modes leads to the following results. The first is the

18th mode (41.4 Hz) with shell flexural modal mass representing

0.04% of the total generalized mass. The second is No. 21 (42.5

Hz) and 0.9%. Then No. 40 (111.0 Hz) and 0.35%; No. 48 (118.1

Hz) and 5.1%; No. 80 (206.8 Hz) and 7.7%; No. 92 (225.6 Hz) and

13.7%; No. 124 (296.6 Hz) and 51.5%; No. 125 (298.3 Hz) and 82.4%;

and so on, In these cases n s is below its maximum of 14 (never

exceeding ns=8 passed to PAIN) _d np is 5 or less (it reaches

its allowed limit). Here it is clear that the M=11 modes should

be in the file beginning at about 300 Hz.

To complete this file, the maximum value of M must be increased,

but to no more than 15 (the maximum allowed). It is necessary

to simultaneously reduce the number of eigenvectors computed by

MRP (Changing n s or np is irrelevant). Thus 40 eigenvectors can

be computed if M=I I is sufficient to complete the file (40.11=

440<450), but only 36 if M=12 is required (36-.12=432<450) and 34

if M=13 is needed (34-13=442), 32 if M=14 is necessary and 30 if

M=15 must be used. The object is to assure that there are few

(if any) missing shell modes of the highest M selected below

about 650 to 700 Hz (i.e., if five harmonics are to be computed).

All modes having the maximum selected value of M with more than
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50% of their modal mass in shell flexure should lie 50 Hz or

so above the frequency of the highest harmonic to be computed

with PAIN.

Narrow Body Aircraft

The narrow body aircraft has its first M=IO mode at 35_2 Hz

(mode No. 12). The fifth M=IO mode occurs at 159.9 Hz (mode

No. 94) and is the first true M=IO shell mode (shell flexural

modal mass=73% of total). Therefore the modal file begins to

be incomplete at a frequency well below 550 Hz and very much

below 825 Hz. In the case of the narrow body it is concluded

that the maximum value M=15 may be required (reducing the

number of eigenvectors computed by MRP to a total of 30).

The maximum frequency of a harmonic attempted with PAIN should

not exceed the frequency where the highest M mode type has

more than say 50% of its modal energy in the cylinder flexural

response. Above that frequency, the structural modal file

used by PAIN is insufficientl_ complete. This will probably

limit PAIN to 3 harmonics (perhaps 4). While a computation

cam still be made that will yield an answer for the _ fourth

harmonic (since the incomplete file extends out to 823 Hz), the

result will be questionable.

Now as M is increased and the number of eigenvectors reduced,

there will begin to be some modes of low order M missing from

the file. For example, when the maximum value of M is used and

only 30 eigenvectors can be computed, there will be 30 modes

listed for each value of M. The 30th mode in the file for any

given M will have the highest frequency of any mode of type M.

Beyond that frequency there will be modes missing of that type

M.

!

j

-114-



In the present narrow body case (where M is limited to 10) there

are 40 eigenvectors or 40 modes listed for each value of M.

Consider the M=I modes. The 40th mode v_th M=I occurs at 618.3

Ez and has a major circumferential component ns=11 (11 full

circumferential waves). Above 618.3 Hz there are modes missing

of the type M=I. Had the number of eigenvectors been limited

to 30, the last M=I mode would have been at 432 Hz. To complete

the M=I modes out beyond the third harmonic (3x165=_95 Ez), 36

eigenvectors are needed (the 36th M=I mode occurs at 503 Hz).

Thus the maximum value of M would be limited to 12. This might

not be optimum however. It may be necessary to increase the

maximum M and allow some modes of low order M to be missing.

Each case will warrant an investigation.

4.4 ComDutation Times

The central _ processor unit (CPU) times for typical fuselages are

given in Table 14. These are for the Control Data Corporation

(CDC) CYB_ET Network operating System (NOS) 176 service (es-

sentially the computer speed is comparable to (but faster than)

the CDC 6600 vintage computer). CPU time is a resultant of pro-

cessing periods and is not clock time. CPU times will Vary from

computer to computer depending upon speed and program handling.

It is a useful measure for comparing speed and costs from compu-

ter to computer and for estimating costs and practicality on a

particular machine.

The most time consuming is the structural calculation. The pro-

gram MRP runs all fuselages at about the same speed, regardless

of the dimensions (or stiffnesses) concerned. For large numbers

of modes, the run-times increase almost in direct proportion to

the increase in the number of computed modes. For instance,

calculation of a total of 300 symmetric and antisymmetric modes

of the scale model fuselage required 1506 secs. When 400 modes
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Table 14. Program Run-Times (Typical)

Pro gram Calculation CPU Time

(Secs.)

CYL2D

MRP
O

MRPMOD

PAIN

Floor angle = 56.6 °

150 symmetric modes

150 antisymmetric modes

300 structural modes

400 acoustic/300 structural(4Hlf/6Hhf)

119

795

711

66

249

CYL2D

m MRP

m MRPMOD

m PAIN

Floor angle = 50.0 ° 197

200 symmetric modes 1087

200 amtisymmetric modes 1043

400 structural modes 91

Modal summary/400 acoustic/400 structural 82

400 acoustic/400 structural(3Hlf/7Hhf) 340

CYL2D

MRP

O

MRPMOD

PAIN

Floor angle = 62.6 o 157

200 symmetric modes 1049

200 antisymmetric modes 965

400 structural modes 90

Modal summary/400 acoustic/400 structural 95

400 acoustic/400 structural(3Hlf/2Hhf) 300

400 acoustic/450 structural(3Hlf/2Hlf) 500

CYL2D

o MRP

O
MRPMOD

PAIN
Z

Floor angle = 73.7 ° 70

200 symmetric modes 1040

200 antisymmetric modes 940

400 structural modes 91

Modal summary/400 acoustic/400 structural 106

400 acoustic/400 structural(IHlf/3Hhf) 300
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were computed for each of the three aircraft fuselages, the

average CPU time was 2041 secs. Thus 33% more modes required

an average of 35% more computation time. Therefore it is an-

ticipated that for a case where 450 modes are computed (the

maximum number that PAIN will work with), about 2300 CPU

seconds will be required.

A complete calculation with PAIN for the scale-model fuselage,

utilizing 400 acoustic modes and 300 structural modes (where

10 interior harmonics (H) were calculated; 4 with the low fre-

quency (lf) scheme and 6 with the high frequency (hf) proce-

dure) required 249 secs.

Calculation of 10 interior harmonics for the typical business

aircraft using 400 (instead of 300) structural modes required

340 secs. 82 seconds were needed to complete the calculation

through the output of the modal summary. The remaining time

was used _in calculating the modal forces for the propeller

noise field and the interior levels (3 harmonics were calcu-

lated with the (slower) low frequency procedure).

In the case of the small body aircraft, a maximum of 3 interior

harmonics can be computed with the low frequency procedure. 5

interior harmonics (2 using the hf procedure) required approxi-

mately 300 secs.

There is a practical limit of 4 interior harmonics for the case

of a narrow body aircraft (Propfan configuration). Only one

can be obtained with the low frequency technique. The CPU time

should be less than 300 secs.

In the extreme case, where say 5 interior harmonics are desired

(3 to be calculated with the low frequency procedure), and

where the number of structural modes is the allowed maximum of

450, the CPU time for PAIN is expected to be less than about

500 secs.
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5.0 FLIGHT TEST COMPARISONS

Flight tests were performed on a trimmed and outfitted Merlin

IVC aircraft (corporate version of the Fairchild Industries

Swearingen Metroliner III turboprop commuter aircraft). The

Merlin IVC is identical to the business aircraft shown in

Figures 36 and 40 and the fuselage construction is basically

as showa in Figure 41 and as detailed in Table 13.

5.1 Description of Aircraft

The Merlin IVC has twin Garrett TPE331 turboprop engines

driving Dowty Rotol four-blade constant speed propellers.

The propeller diameter is 2.69 m with a tip clearance of

about 0.06 times the propeller diameter. The fuselage is

am all metal cylindrical semi-monocoque, pressurized fail-

safe structure of 2024 aluminum alloy having a diameter of

1.68 m.

The cabin of the aircraft used in the tests is shown in Fig-

ure 42. A bulkhead located at Station 126 separates the

crew flight deck from the forward end of the cabin amd the

aft end of the cabin terminates at Station 437 where a bulk-

head (with door) closes off the rear baggage compartment.

The interior of the cabin is trimmed with 0.05 m (2 inches)

of PF-I05 Fiberglas in mylar bags with a headliner of 3.2 mm

(I/8 inch) thick heat-formable Klegecell with two glass face

sheets of Tedlar. The trim surface mass is 1.95 kg/m 2 (0.4

lb/ft2). A relatively small portion of the interior trim

surface is covered with decorative Teak wood (less than 10%)

and is not felt to warrant consideration in the modeling .

The aircraft tested has leather upholstered seating for eight

passengers in the mid and aft sections of the cabin plus a
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couch (sofa) of about I meter length located in the forward

end of the cabin. In addition, food and beverage storage and

preparation facilities are present in the forward end.

The seating structure dead weight on the floor spread over

Stations 264-437 is about 12.2 kg/m 2. This same weight spread

over the entire length of the cabin gives 6.8 kg/m 2. An aver-

age of these is 9.5 kg/m 2 which is assumed to be a representa-

tive distributed mass. The mass per unit of area of the floor
-\

used as an input to MRP is then 9.5 kg/m 2 plus the weight of

the floor and supporting floor structure, i.e., about 4.2 kg/m 2

(Table 13) yielding a total of 13.7 kg/m 2. This number is very

close to the result used in the studies of Section 4 (and Table

13) so the structural modal file for the business aircraft

given in Appendix C is identical to that of the present test

aircraft.

The surface area of cabin sidewall trim (floor-to-floor) is

given by

A t = 2_rLc(a-h t) (I-8o/180)

where 8° is the floor angle (500), a is the fuselage radius

(0.84 m), L c is the cabin length (7.89 m) and h t is the trim

insulation thickness (0.055 m). In the present case A t is

28.1 m 2. All absorption in the cabin space is assumed on the

sidewall. The forward and aft bulkheads are taken rigid and

unabsorbing. This is a simplification because they do absorb

and transmit sound. Also it was determined after the tests

that the door to the baggage compartment had been inadvertently

left open in flight.

The absorption by the seating and carpets is assumed to have

negligible influence on the interior sound levels in the range
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between 100 and 550 Hz. This assumption can be justified by

examining the relative absorption capabilities of the sidewall

trim system versus that of the seating. For instance, at

500 Hz, the absorption of a typical upholstered seat would be

limited to about 3 Sabins (aS=3 ft 2 or 0.28 m2). 8 seats

plus the couch would give, say 27 Sabins, or an absorption of

2.5 m 2. The PAIN computed conductance _ of the sidewall trim

for a lightly damped trim panel, say _T=0.2, at 500 Hz, is

0.017 and for a heavily damped trim panel, say _T=2, it is

0.027 at 500 Hz. The absorption afforded by sidewall trim

is therefore at a minimum

aS = 8(A t = 3.8 m 2

or approximately 41 Sabins. Now it is seen from these numbers

that the seating could conceivably lead to a slight reduction

in space-average interior levels. However, in the present

case, the seating is located in the aft two-thirds of the

cabin (except for the couch) and in that region, as will be

shown in the flight test data, the sound pressure levels are

significantly lower than in the forward third of the cabin.

Thus the absorption in the forward third of the cabin is of

more concern since total absorption is the product of mean

square pressure times aS. In the forward third there is the

couch (approximately 3 Sabins) plus carpeting (ignored) plus

sidewall trim (approximately 41/3=13.7 Sabins). Thus seating

should reduce interior levels by less than I dB (on the space

average) although the actual reduction may be slightly more

in the area where seating is located.

5.2 Test Program

The measurement program consisted of both ground and flight

tests. The primary purpose of the ground tests was to obtain

some minimal data outside the aircraft so that ANOPP predic-
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tions of the propeller noise field could be compared to meas-

urements. No attempt was made to instrument the aircraft to

allow in-flight measurements of the propeller field on the

fuselage. This was an unavoidable deficiency in the flight

tests due largely to tha status of the aircraft and the

limited time that the plane could be dedicated to the effort.

Moreover, ANOPP is unable to predict the actual blocked pres-

sure field on the skin anyway (it calculates free-field levels

as previously noted), and therefore it seemed that for the

present tests, some relative measure of comparisons on the

ground would be sufficient. The quality of _TOPP free field

wredictions had already been established (such as through

the scale-model comparisons presented in Section 3 of this

report).

There were a number of different stationary ground tests that

were performedwhile varying propeller speed, torque (pitch),

with one prop or the other. However, comparisons between

exterior measurements and exterior predictions were never

attempted because the _0PP program was unable to predict

the propeller harmonics v_thout significant air inflow velocity

to the prop disk. Thus for all practical purposes, the only

useful data were the interior measurements made in-flight dur-

ing the test runs listed in Table 15.

The in, flight data obtained during Runs 2 and 8 were all from

fixed microphone measurements. Sound pressure levels were

recorded at head (ear) levels _th six microphones (I through

6) as sho_,rn in Figure 42. These measurement data cannot be

used in the comparisons because space-average interior levels

are reauired and the five microphones in the cabin (2 through

6) were not located to provide that particular measurement.

The comparison data were taken in Runs 10, 11, and 12. In

these three runs, the airspeed was varied (at the same flight

altitude) and swept microphone data were taken at various
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axial positions along the cabin. The objective was to be

able to calculate the space average interior levels for five

harmonics at each of the three flight conditions providing a

data pool of 15 measurements for comparisons with PAIN pre-

dictions. In order to obtain the desired measurements, swept
data were to be taken at a minimum of three axial stations.

Two of the stations eventually selected are shown in Figure 42,

i.e., locations 7 and 8 (in the aisles between the seats),

where microphones 5 and 6 were swept by hand following the

scheme shown in Figure 43.

During the flight tests, there were no swept measurements made

in the forward third of the cabin. The presence of the couch

and cabinetry in the forward endl did not allow the flight

personnel to follow the desired sweeping pattern and a decision

was made by them to obtain swept data only at positions 7 and 8

and to retain fixed microphone data at positions 2, 3, and 4 as
had been done in Runs 2 and 8. This decision necessitates the

use of a rather cumbersome analytical approach to obtain the

space-average levels in the cabin. The propeller noise peaks

over the forward third of the cabin, and the highest interior

levels occur in that region. Any errors made in estimating

space-average sound pressure levels in the forward third of the

cabin are strongly reflected in estimates of the total space-

average levels.

5.2. I Interior Measurements

To review, the data consist of two basic types of measurements:

(I) fixed position microphone data at the head (or ear) level at

up to five locations in the cabin (microphone I was in the crew

flight deck area) and (2) swept microphone data at two fixed

axial stations. In Run Nos. 2 and 8, all microphones were fixed

at the head (ear) level. In Run Nos. 10, 11, and 12 microphones

2, 3, and 4 were fixed at the head (ear) level (in the same posi-
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tions as in Runs 2 and 8) and microphones 5 and 6 _were swept at

positions 7 and 8. In these latter tests, no fixed head (ear)

level measurements were made with microphone 5 or 6.

The cabin can be divided into 3 subvolumes: Stations 126-230,

230-333, and 333-437. The swept microphone measurement taken

at position 7 (with microphone 5) is considered to give the

space average level in Subvolume 2 (230-333) and the swept

measurement taken at position 8 (with microphone 6) is con-

sidered to give the same data for Subvolume 3 (333-437).

Measurements made with microphones 2 and 3 (which lie in Sub-

volume I (126-230)) are averaged to determine an average head

(ear) level N_ for each harmonic. Also, measurements with

head (ear) level microphones 4 and 5 which lie in Subvolume 2

in Run Nos. 2 and 8 are averaged to determine an average head

(ear) level for each harmonic, i.e., _.

In summary, let

_=mean head (ear) level measurement for those microphones

located in Subvolume j (harmonic H), i.e.,

H 101ogI(I/N) _I0 SPLH/IO 1_j =
ieJ

and also let

t7

s_=space average (swept) level measurement made in Sub-
W

volume j (harmonic H)

The available measurements are then as given below
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Microphone Locations and Usage
I

Subvolume, j Run Nos. Microphones_ i
Head (ear) Swept

I 2,8,10,11,12 2,3 -

2 2,8 4,5 -

2 10,11,12 4 5

3 2,8 6 -

3 10,11,12 - 6

Table 16 summarizes all of the pertinent interior flight meas-

urements. Figure 44 shows one of the interior spectrum of the

type from which the data in the table were taken. The table

contains the measurements and also the calculated mean head

(ear) level_ where such a calculation is meaningful. Note

that the highes_ levels in the aircraft occur in Subvolume I

(which the propeller plane passes through) and thus the space-

average interior level in the cabin will be dominated by the

space-average level in the forward-most subvolume. Unfortunate-

ly, there is no direct way of determining a relationship between

the measured (average) head (or ear) level and the space-average

level so the latter must be estimated. Also note that there is

a considerable decrease in sound levels from the forward to the

aft subvolume. This makes an accurate estimation of the space-

average level in the forward subvolume even more critical.

5.2.2 $cace-Average Levels

The mean difference can be calculated between the mean head

levels in Subvolumes I and 2 for Runs 2 and 8, i.e.,

For Runs 10, 11, and 12, there can also be calculated the mean

difference

<, IH-sH>Io, 11& 12 ,
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Table 16. Interior Measurements

Run #2 V =192 kt, Alt.=17,500 ft

Head (Ear) Levels

I 102.2 102.4 95.5 103.8 102.3 101.4 98.4

2 99.0 100.0 98.2 84.8 99.5 95.4 87.5

3 94.2 95.6 80.5 82.0 94.9 81.3 82.0

4 81.5 76.3 67.0 65.8 79.6 66.4 66.7

5 69.0 76.3 69'0 68.2 74.0 68.6 63.0

Run #8 V =210 kt T Alt.=12,000 ft

Head (Ear) Levels

I 100.6 101.7 96.7 102.0 101.2 100.1 97.0

2 98.4 97.8 96.5 80.5 98.1 93.6 84.5

3 90.6 95.5 76.7 78.1 93.7 77.5 79.8

4 66.6 71.0 66.0 66.2 69.3 66.1 65.0

5 72.0 75.0 64.0 69.5 73.8 67.5 66.7

Run #10 V =238 kt I

Head (Ear)

H SFL_ SPL_

I 104.4 102.5

2 98.8 103.2

3 92.5 99.7

4 80.2 82.0

5 72.2 76.7

Alt.=5,000 ft

Levels

H SPL_

103.6 95.8

IOI.5 98.8

94.5 82.6

81.2 72.0

75.0 63.0

swept

H • H s_=SPL_s2=SFL 7

102.0 99.5

90.2 82.0

80.8 78.8

73.2 68. I

70.7 67.3
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Table 16. Interior Measurements (Continued)

Run V =216 kt I Alt,=5,000 ft

' • Head (Ear) Levels Swept
I

H s_ _,._ _ _P_ s2_-s_7_ _ s_-s,_
I 101.7 102.0 101.9 96.7 97.6 97.7

2 96.6 99.0 98.0 94.4 88.8 79.5

3 90.5 96.2 94.2 80.8 79:2 75- I

4 70.5 77.0 74.9 71.4 71.7 64.5

5 72.7 77.2 75-5 59.0 67.8 64.0

Run #12 V =165 kt, Alt,=_,000 ft

Head (Ear) Levels Swept

H SPL_ SPL_ _ SPL_ s_=SPL_ s_=SPL_

I 97.8 95.6 96.8 92.7 93.8 96.2

2 94.2 91.7 93. I 92.3 87.0 76. I

3 89.4 91.4 90.5 75.4 75.2 67.9

4 73.5 76.8 75.5 69.5 67.0 60.5

5 68.8 72.0 70.7 58.0 63.2 60.0
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where s_ is the space average level in Subvolume 2 (swept meas-

urement with microphone 5). Table 17 shows the results of the

calculations. There are a number of different things to be

noted. First, all runs are for the same propeller speed (Table

15). From a frequency selection standpoint, this means that

the propeller harmonics will sample the cabin modes in the same

manner. However the exterior fields will be different from run

to run thus from a spatial coupling standpoint, the sampling of

interior modes will not be the same. Nevertheless, there is a

certain consistency in the data, i.e., between the differences

in head (ear) levels and the differences in head and space

average levels for the two subvolumes. For instance_ the third

harmonics show the largest differences. On the average there

are similar magnitudes of differences for all of the harmonics

except for the fourth (and possibly the second). There is mot

mu_h scatter except in the case of the fourth harmonics.

A standard hypothesis test is performed on the data on a bar-

Let _ be the true mean differencemonic-by-harmonic basis.

(mean over Runs R and N) of the difference of the means in Sub-
if

volumes I and 2, i.e., for harmonic H:

RN

= mr- <Snr>N+R '

r n

where

'"o:: -
and n is one from a large sample of runs (of total number N)

where _H are the available measures of average sound pressure

levels in Subvolume 2, and r is similarly from a large sample

R where s_ are the available measures of average sound pressure

levels in Subvolume 2. The hypothesis is that N_ is zero, i.e.,
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Table 17. Differences Between Average Sound Levels

in Forward and Middle Subvolumes

I

2

3

4

5

Run 2

0.9

4.1

13.6

13.2

5.4

Run 8

1.1

4.5

16.2

3.2

6.3

i

1.0

4.3

14.9

8.2

5.9

H
m

I

2

3

4

5

R_n I0

1.6

11.3

13.7

8.0

4.3

Run 11

4.3

9.2

15.0

3.2

7.7

Run 12

3.0

6.1

15.3

8.5

7.5

H H
<_ I"S2>I0, 1 1,&12

3.0

8.9

14.7

6.6

6.5
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The estimator for _ is

n 8 r=10, 11&120nrl

ORIGINAL PAGE t$
OF POOR QUALITY

with sample

+0 H
=(1/6)(0H,10 +OH2,11+OH,12+O_,lO+O_ 11, 8,1 2 )

standard deviation

r=10, 1 I&12= 8
_0Hr-3H) -2 13

The acceptance region for the hypothesis at the a level of

significance is given by

where ts;a/2 is the Student t-distribution with n=5

of freedom. The results are given in Table 18.

degrees

Table 18. Results of Hypothesis Tests

Hypothesis
Test for
Harmonic

Sample
Statistic s Level

of Acceptance
R_gion Accept?

I -1.96 1.21 0.2 0.73 no

2 -4.57 2.35 0.2 1.42 no

3 0.23 1.61 0.2 0.97 yes

4 1.63 6.07 0.2 3.65 yes

5 -0.65 I.78 0.2 I .07 yes

Bias is indicated for harmonics I and 2, where the hypothesis is

rejected. For the higher harmonics there is no proven bias.
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-I I+ _ -2 2
Let _6=_ _ and NS=N_+ 4.5. A new hypothesis test (for the first
two harmonics)of the form

does not indicate bias.

The space-average interior levels are calculated using the

following interpretation of the results above and other assump-

tions-
• \

I) Implications are that on the average, for Runs 10, 11,

and 12:

s3_ ,3
2-"2

s4_,4
2-_2

sS_,5
2-_2

2) The relationships assumed above between the average

head (ear) levels and space-average levels in Sub-

volume 2 are reasonable for use in Subvolume I as

well, i.e._

sl:.I
s4_°4
I-_I

s5-,,5
I-"I

3) The space-average levels in the cabin (for Runs 10,

11, and 12) can be estimated using the swept micro-

phone data taken in Subvolumes 2 and 3 and the
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average head (ear) level data from Subvolume I cor-

rected for bias according to 2) above.

Note that the sample standard deviation in Table 18 lies in

the narrow range between 1.2 and 2.4 dB for four of the five

harmonics, but it is about 6 dB for the fourth harmonic.

Although no bias adjustment is warranted for that harmonic,

there is a high probability (I chance out of 3) that the

predicted space average in Subvolume I will be off by more

than 6 dB, even if all of the assumptions above are accurate.

The space-average levels are computed from the measurement

H is the space
data with the following relations, where sj

average sound pressure level in Subvolume j:

_j=1oS_/10 ,

N

_=(I/N) _ _j

J=1

; N=3 subvolumes

N

SH-I(I/m) _ (x_j-_H)2 I_
re=N- I

J=1

Swace-Averaze Level (Harmonic H)

S_H=1Ol°g

(I-=) _ Confidence Limits (on the s_ace average)

SPL_-a= I010 g(_+ sHtN_ i ;a/2/_-N) •

The calculated space-averages and the 95% and 99% confidence

limits are given in Table 19.
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Table 19. Measured Space Averages and Confidence Limits

Run No. 10

Bi as __ SPL_ 5 *H _ Correction s_ s_ s_ SPL H

I 103.6 -2 101.6 102.0 99.5 101.2 96.1-103.5

2 101.5 -4.5 97.0 90.2 82.0 93.2 <99.3

3 94.5 0 94.5 80.8 78.8 90.0 <96.9

4 81.2 0 81.2 73.2 68.1 77,2 <83.5

5 75.0 0 75.2 _.7 67.3 72.2 <77.2

SPL 99

<105.3

<102.3

<100.0

<86.4

<80.0

Run No. 11

Bias

H M H Correction SlH sH s_ _H SPL95

I 101.9 -2 99.9 97.6 97.7 98.5 91.7-10

2 98.0 -4.5 93.5 88.8 79.5 90.1 <95.8

3 94.2 0 94.2 79.2 75.1 89.6 <96.6

4 74.9 0 74.9 71.7 64.5 72.1 <77. I

5 75.5 0 75.5 67.8 64.0 71.7 <77.8

1.1

SPL 99

<103. I

<98.6

<99.8

<79.9

<80.7

Run No. 12

Bias

I 96.8 -2 94.8 93.8 96.2 95.0 89.8-97

2 93.1 -4.5 88.6 87.0 76.1 86.3 <91.5

3 90.5 0 90.5 75.2 67.9 85.9 <92.9

4 75.5 0 75.5 67.0 60.5 71.4 <77.9

5 70.7 0 70.7 63.0 60.0 66.9 <72.9

.3

SPL 99

<99.2

<94.4

<96.0

<80.9

<75.9

* Only the upper limit is defined for those cases with the "less

than (<)" symbol
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5.3 Com_uter Simulation of Flight Tests

As discussed in Section 4, the exterior field predictions made

with the ANOPP program need to be examined to determine whether

the PAIN grid is properly located and also to see if the pres-

sure field decreases sufficiently over the length of the grid.

For the present aircraft, a preliminary selection of the grid

centering variable (i.e., centering relative to the maximum

predicted sound pressure level on the exterior of the fuselage)

is k =8. Figure 36 illustrates the selection.
P

ANOPP Prediction Methodology

The ANOPP program cam predict propeller tones using various

methods and the degree of complexity of the calculations will

impact the user. Two methods of concern that cam be used to

predict the free field propeller noise in-flight are the so-

called Method I or full Blade formulation in which only 40 of

the pressure siguatures (out of 160 required) cam be computed

at amy one time, and the Method 3 or compact chord approximation

(line source model) in which all 160 signatures cam be computed

simultameously.

Run No. 2 was selected for comparing the full blade and compact

chord models, with the hope being to use the simpler Method 3

on the three flight comparison runs 10, 11, amd 12. Figures 45

and 46 illustrate the differences in the results of the calcula-

tions. Figure 45 gives the sound pressure levels predicted along

the line 2=I (Figure 3) that were computed using both methods

(the Method I or full blade prediction is considered the most

accurate prediction possible). It is seem that the amplitudes

forward of and also near to the propeller plane compare quite

well for all harmonics. The full blade predictions exceed the

lime source predictions aft of the propeller plane, usually by

2 to 5 dB after each has rolled off about 10 dB below the peak
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levels. Certainly in the case examined most of the acoustic

energy incident on the fuselage is within the grid area. The

levels of the first harmonic decrease more than 12 dB from

k=7 to the extremes of the grid and much larger roll-offs are

predicted for the higher harmonics. The ANOPP predicted roll-

off of the over-all sound level is quite consistent with the

empirical prediction made using Figure 39 as discussed in

Section 4. I.

Figure 46 shows the phase calculations (_=I) for the various

harmonics as predicted by ANOPP using the two methods. There

appears to be very little similarity. But the PAIN program

is concerned not with phase point-by-point on the grid, but

with phase difference point-to-point. Phase differences can

be compared by adjusting the phase predictions to their re-

spective means and then by overlaying them as done in Figure

47, where it is observed that the phase information compares

quite well. On the basis of these comparisons, it was decided

that the ANOPP Method 3 was sufficiently accurate. Later to

verify the correctness of this decision, the Run 2 propeller

noise predictions (both methods) were used as an input to the

PAIN program and the interior levels predicted in the Merlin

IVC aircraft were compared. This was done for blade downsweep

only. The differences in predicted interior levels were such

that the full blade model resulted in very slightly higher in-

terior levels. The results for the first harmonics differed

by 1.05 dB; for the second: 1.46 dB; the third: 0.05 dB; the

fourth: 2.04 dB; the fifth: 1.84 dB.

5.3.2 Predicted Exterior Levels

Tables 20, 21, and 22 give the ANOPP predicted free field

flight levels along the grid line _=I. The data are also

given in Figures 48-53. It should be recalledthat the free

field amplitudes are increased according to Eq. (43) of Ref-
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Table 20. Exterior Levels in Flight Run No. 10

(ANOPP Compact Chord, free field,_ =I)

Sound Pressure Level, dB re 20 ,Pa
Harmonic

H k=1 2 3 4 5 6 7 8

I 122.4 125.4 128.4 131.4 134.1 136.1 136.3 133.5

2 107.4 112.3 117.3 122.3 127.1 131.2 133.0 129.2

3 92.2 98.8 105.7 112.7 119.6 125.8 129.3 125.3

4 77.0 85.2 93.9 102.9 112.0 120.2 125.5 121.7

5 61.7 71.7 82.1 93.0 104.1 114.5 121.6 118.4
i i i l

Phase, _H (degrees)

I -91.7 -102.1 -111.9 -120.9 -129.0 -135.1 -134.3 -103.7

2 "52.3 -72.6 -91.2 -108.2 -124.9 -137.7 -146.7 -132.2

3 -11.7 -42.2 -69.3 -94.5 -117.3 -138.3 -155.7 -156.4

4 29.9 -11.0 -47.2 -79.7 -109.5 -137.4 -162.7 -177.4

5 71.9 20.9 -24.0 -64.1 -101.0 -135.6 -168.3 164.2

Sound Pressure Level, dB re 20 ,Pa
Harmonic

E k=9 10 11 12 13 14 15 16

130.0 127.4 124.7 122.1 119.5 117.0

118.7 114.1 109.6 105.2 101.1 97.2

106.9 100.5 94.3 88.6 83.1 77.8

94.7 86.5 79.0 71.9 65.2 58.6

81.3 71.8 63.3 55.3 47.4 39.5

I 133.4 132.3

2 125.9 122.9

3 118.2 113.2

4 110.4 102.9

5 102.8 91.3

Phase, _H (degrees)

I -70.7 -67.0

2 -97.2 -96.1

3 -123.8 -123.7

4 -154.2 -151.3

5 167.0 178.4

-70.4 -75.6 -80.9 -85.8 -90.0 -93.2

-105.9 -I 17.8 -129.2 -138.0 -146.4 -151.3

-140.0 -159.6 -177.9 167.5 157.2 151.3

-174.1 157.7 132.1 112.9 100.5 94.1

150.5 112.3 79.3 56.5 43.0 37.5
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Table 21.

Harmonic

H

I

2

3

4

5

I

2

3

4

5

Harmonic

H k=9

I 131.3

2 123.5

3 115.4

4 107.4

5 IOO.8

Exterior Levels in Flight Run No. 11

(ANOPP Compact Chord, free field, _ =I)

Soured Pressure Level, dB re 20 _Pa

k=1 2 3 4 5 6

12i .0 124.0 127.0 129.9 132.6 134.6

105.9 110.8 115.8 120.8 125.6 129.6

90.5 97.1 104.0 111.1 118.1 124.2

75.1 83.4 92.1 101.2 110.3 118.6

59.7 69.6 80.1 91.2 102.4 112.8

Phase, _ (degrees)

-100.7 -110.1 -I 18.8 -126.9 -134.0

-67.8 -85.9 -102.4 -I 17.5 -131.3

-33.8 -60.8 -85.0 -106.9 -127.0

1.3 -34.9 -66.8 -95.3 -121.5

36.8 -8.1 -47.7 -82.9 -I 15.2

Soured Pressure Level, dB re 20 _Pa

10 11 12 13 14

130.4 128.2 125.6 122.9 120.2

120.6 116.4 111.8 107.3 102.9

110.3 104. I 97.6 91.5 85.7

99.0 90.9 82.7 75.3 68.4

85.3 75.4 66.3 58.6 51.1

Phase, _ (degrees)

I -70.1 -64.5 -67.1 -71.6 -76.5

2 -97.7 -92.7 -100.6 -111.4 -122.1

3 -127.0 -I 19.5 -132.8 -150.9 -168.4

4 -163.8 -148.0 -165.5 167.8 142.4

5 148.7 172.4 156.4 118.8 86.2

7

134.7

131.4

127.7

123.9

119.9

-139.3 -138.2

-143.5 -151.4

-145.5 -161.0

-146.1 -168.6

-145.7 -174.9

15

117.6

98.8

80.3

61.9

43.6

8

131.5

127.4

123.7

120.3

117.1

-107.4

-137.8

-162.8

176.3

158.3

16

115.6

94.9

75.1

55.4

36.0

-81.o -84.9 -87.9

-131.4 -138.5 -143.2

177.2 167.3 161.8

123.4 111.6 1o6.2

65.2 53.9 50.4
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Table 22. Exterior Levels in Flight Run No. 12

(ANOPP Compact Chord, free field, I =I)

Sound Pressure Level, dB re 20 _Pa
Harmonic

H k= I 2 3 4 5 6 7 8

I 118.2 121.1 124. i 126.9 129.5 131.3 131.3 127.3

2 102.7 107.6 112.6 117.6 122.3 126.3 128.1 123.8

3 87.0 93.6 100.6 107.7 114.6 120.8 124.4 120.8

4 71.1 79.5 88.4 97.6 106.7 115.0 120.5 118.0

5 55.2 65.3 76.1 _ 87.4 98.7 109,2 116.6 115.1

Phase, _H(degrees)

I -120.7 -127.8 -134.3 -140.2 -145.4 -148.9 -147.2 -118.5

2 -101.3 -114.9 -127.1 -138.2 -148.2 -156.9 -162.6 -153.6

3 -80.8 -100.9 -118.6 -134.5 -148.9 -162.2 -173.8 -178.9

4 -59.2 -86.0 -109.1 -129.5 -148.3 -165.9 177.3 161.6

5 -36.7 -70.3 -98.9 -123.8 -146.8 -168.6 169.8 145.6

Harmonic
Sound Pressure Level, dB re 20 _Pa

k=9 10 11 12 13 14 15 16H

I 126.5 126.0 124.1 121.6 118.9 116.2 113.6 111.1

2 117.4 114.8 110.9 106.3 101.8 97.4 93.4 89.5

3 109.1 102.1 96.2 89.8 83.8 78.3 73.2 68.4

4 104.4 87.8 77.1 70.3 64.9 59.5 53.8 48.0

5 102.0 86.1 72.6 61.6 52.4 44.3 36.7 29.2

Phase SH (degrees)

I -70.5 -60.3 -60.6 -63.7 -67.4 -71.0 -74.2 -76.7

2 -105.6 -88.0 -90.9 -98.9 -108.0 -I 16.3 -122.7 -126.7

3 -153.4 -120.8 -123.2 -137.5 -153.9 -167.6 -176.4 179.8

4 152.6 164.4 174.7 156.8 137.3 125.5 120.4 120.8

5 114.9 78.4 50.9 41.7 42.8 46.4 51.5 59.3
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erence I to account for the blocking by the fuselage surface.

For consistency with the scale model test results, a maximum

increase of 4 dB is allowed, i.e., the right hand side of

Eq. (43) is multiplied by a factor 0.8.

The scale-model tests showed that the reflection effects dissi-

pate faster than the PAIN model predicts, so the computer gen-

erated field may be "stronger" than the actual field. No

changes are proposed in propeller data input, however, until

ANOPP calculated blocked pressures are available.

5.3.3 Fuselage and Cabin Modeling

The fuselage modeling is exactly as detailed in Section 4.2.2.

The structural modal file (identical to that in Appendix C) is

created using the input data specified for the business aircraft

as given in Table 13.

The cabin modeling is also basically identical. The floor

angle is taken as 50 ° . The acoustic modal file such as shown

in Appendix C (that output by PAIN) is created once the cabin

length is specified. Results given in Appendix C were for a

cabin length of 7.75 m. In the present case, the length is

7.89 m° Also the trim panel surface mass is different (1.95

kg/m 2 as noted in Section 5.1).

Both of the input files (to PAIN) are complete, or sufficiently

complete to allow use of the low frequency calculation proce-

dure for all 5 harmonics.

5.3.4 .PAIN Input and Output Data

Input data for the PAIN program consist of the output files

from MRPMOD and CYL2D plus its own exclusive data. These data

are the same type as was used for PAIN input in the scale model
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tests. Table 6 should be consulted to review the requirements.

Damming

The structural loss factors of the bare (or untrimmed) fuselage

are taken as 2/ fr where fr is the resonance frequency. PAIN

will calculate trimmed fuselage "loss factors" necessary for

, and ',the transmission predictions, i.e., _r Ur "

The acoustic loss factors are input as zero so that PAIN will

calculate the sidewall conductance and then the loss factors.

The trim panel loss factor WT is set to 2.0 to force PAIN to

calculate (what is believed to be) the most accurate trans-

mission coefficient. Figure 54 shows the effects of changing

WT" The predicted interior levels will not be affected nearly

as much as these curves might imply because a resonance con-

trolled trim will also more readily absorb sound from the

cabin space. For instance in Run 10, reducing WT from 2.0 to

0.2 increases the predicted space average level by only 2.75

dB for the first harmonic (104.5 Hz). It actually decreases

it by 0.48 dB for th_ second harmonic (209.1 Hz) and increases

it by only 1.95 dB for the third harmonic (313.6 Hz). An in-

crease of 4.58 dB is predicted for the fourth harmonic (418.1

Hz) and 3.73 dB for the fifth harmonic (522.7 Hz). The above

differences (quoted for blade downsweep) show that the trim

effects are not simply describable in terms of a transmission

coefficient (or transmission loss), but onl 7 within the con-

text of the PAIN analytical model. Until future superior

developments replace the present trim model, it is recommended

that _T be arbitrarily set at 2 to create a trim model valid in

the frequency range from about 50 to perhaps 1000 Hz. Reference

6 may be consulted for review of the trim model.
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Propeller

The propeller is located as before by the variables rp, Zp,

and @ (Figure 36). As can be seen in the figure rp is 2.35 m,

Zp is 1.12 m, and _ is 75 ° (recall that the PAIN input re-

quirement for $ is to the nearest 5° increment). In the

present case, the number of blades B is 4 and the propeller

rotation speed N is 1568 rpm. The blade sweep variable is

+I (downsweep) or -I (upsweep). PAIN must be run twice

since there are two propellers rotating in the same direction

and the interior levels predicted for blade downsweep and up-

sweep must be added (on a power basis) to obtain the pre-

dicted levels in-flight.

Pressurization

The effects of pressurization are accounted for (in PAIN)

through adjustment of the exterior and interior air densities

and sound speeds. The flight status is determined by the ex-

terior and cabin temperatures and the cabin pressure. The

correct exterior sound speed is 341.6 m/s. This is based on

on temperature of 17°C (Table 15) which is higher than the

standard at 5000 ft. The ANOPP exterior sound speed was

taken as 334.1 m/s which is nearer that of standard tempera-

ture. This was an error in the ANOPP input, but a difference

of only slightly over 2% less than the true sound speed is

not significant. The PAIN input duplicates the ANOPP input

of 334.1 m/s with an exterior density of 1.1012 kg/m 2. The

interior sound speed is 343 m/s with a density of 1.204 kg/m 2.

This latter value is based on an ICAO standard pressure alti-

tude (12.243 psia at 5000 ft plus a 2.5 psi differential) and

68°F in the cabin. Had comparisons been attempted at higher

altitudes, greater care would have had to have been taken in

duplicating flight exterior conditions. However here the

errors incurred in predicting exterior prop noise are not

considered to be sufficiently great to force a re-run of ANOPP

for the three runs 10, 11 and 12. '_Estimates are that much less
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than a one decibel change in exterior levels would result if

r e- run i

Inwut and Output Data

Formatted input data for Programs MRP, MRPMOD and PAIN are

given in Appendix D (Run 10 only). Also give n in the same

Appendix are the propeller blocked field data output by PAIN

(Run 10) and the interior predictions for that run. In the

interest of brevity, similar input and output data for Runs

11 and 12 are not shown.

5.4 Comwarisons to Flight Test Results

The fundamental flight test comparisons are summarized in

Tables 23 and 24 and in Figures 55, 56 and 57. The follow-

ing is a brief description of the findings:

I) Predictions for four of the five harmonics fall with-

in the 99% confidence limits of the measurements (for

all three runs (10, 11 and 12)).

2) Predictions for 4 out of 5 harmonics also fall within

the narrower 95% confidence limits for Run 10, and in

Runs 11 and 12, 3 out of 5 predictions fall within the

95% confidence limits and predictions for the 2n_.ddhar-

monics fall outside by 1.3 and 1.4 dB respectively.

3) In each run, the prediction for the fourth harmonic

yields the major discrepancy.

The sample mean error between predicted (dcwnsweep

plus upsweep) and the measured space average level

is +4,3 dB across all harmonics and runs (15 datum;

predictions exceeding measurements) with a standard
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Table

Hypothesis
Test

on

24. Sample Statistics and Acceptance Regions

for Interior Sound Levels (Table 23)

Sample Level Ac c eptanc e

Statistics of Region

_(dB) s(dB) Significance (+dB)

Accept?

All 15 datum

(3 runs x 5 4.28 4.12 0.2 1.43

harmonic s ) 0.05 2.28

\

12 datum 2.62 2.43 0.2 0.96

(H=4 excluded) 0.05 1.54

Run #10 4.00 3.62 0.2 2.48

(5 harmonics) 0.05 4.49

Run #11 4.56 5.42 0.2 3.71

(5 harmonics) 0.05 6.72

Run #12 4.28 4.08 0.2 2.80

(5 harmonics) 0.05 5.07

H=I 1.83 0.51 0.2 0.56

(10, 11 and 12) 0.05 1.26

E=2 6.5 o.56 o.2 o.61
(10, 11 and 12) 0.05 1.39

H=3 1.33 0.60 0.2 0.65

(10, 11 and 12) 0.05 1.49

H=4 10.93 1.76 0.2 1.92

(10, 11 and 12) 0.05 4.37

H=5 0.80 0.92 0.2 1.00

(10, 11 and 12) 0.05 2.28

no

no

no

no

no

yes

no

yes

no

yes

no

no

no

no

no

yes

no

no

yes

yes
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deviation of 4.1 dB (Table 24).

5) Excluding the results for the fourth harmonic (i.e.,

using 12 datum), the mean error is 2.6 dB with a

standard deviation of 2.4 dB.

6) In both cases 4) and 5) above, a standard hypothesis

test clearly (but not surprisingly) shows a bias

present in predictions.

7) Examined run-by-run, the sample mean errors ranged

between 4.0 and 4.6 dB and the sample standard devia-

tions between 3.6 and 5.4 dB. At a sufficiently low

level of significance, none of the three runs can be

shown to be biased, but actually this is due to the

large discrepancies between the predictions and meas-

urements for the fourth harmonics.

8) Examined harmonic-by-harmonic, the sample mean errors

ranged between 0.8 and 6.5 dB, but ballooned to 10.9 dB

for harmonic 4. In all except the case of the third

harmonics bias is present. Of great significance how-

ever is the low level of random error as exhibited by

a standard deviation of less than I dB for four of

five harmonics and only 1.8 dB for the fourth harmonic.

It should be noted that bias adjustments were previously made to

the raw data to obtain estimates for the space average levels in

the forward subvolume. Had those adjustments not been made, i.e.,

if the head level measurements had been taken as representative

random samples and the average level taken as the space average

in the forward subvolume for the first two harmonics, the errors

would have been smaller (see the numbers in the parentheses in

Table 23 and also refer to Figure 58). The sample mean error

between predictions and measurements across all 15 datum would
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be reduced to 3.4 dB with a standard deviation of 4.1 dB. By

excluding the fourth harmonics these become 1.5 dB and 1.1 dB

respectively. As before bias is indicated. Now however the

mean errors (averaged across the three runs) for the Ist and

2nd harmonics are only 0.9 and 3.0 dB respectively with stand-

ard deviations of 0.35 dB and 0.85 dB. _Fhat these mean to the

eventual user of the PAiN program is a matter to be discussed

in the concluding section.

\

Next consider the accuracy of the predictions made with the

"high frequency formulation". As previously stated, these

calculations are always output by PAIN. Thus there are com-

paritive predictions for all harmonics where results from the

low frequency technique are available. At sufficiently low

frequencies predictions made with the high frequency procedure

may be spurious and if so, they should be ignored. Use of the

low frequency procedure is preferred whenever possible. Eow-

ever, as noted in Section 4.0, for large fuselages, the high

frequency procedure will have tobe used above the first few

harmonics.
• °

The results for the present flight tests are shown in Table 25.

Predictions for the first harmonics are spurious and are dis-

carded. The mean error for the twelve remaining datum (2nd

through 5th harmonics) is -1.43 dB with a fairly large standard

deviation of 6.26 dB. At the a=O.05 and 0.2 levels of signi-

ficance, a zero bias hypothesis test yields acceptance regions

of -+3.97 and -+2.46 dB. Since the mean error falls within ei-

ther of these bounds, the hypothesis is accepted.

Reviewing the results, it can be seen that the low frequency

formulation tends to over-predict, while the high frequency

formulation does not. Nevertheless the latter predictions

are to be considered strictly supplementary in any instance

where predictions can be obtained with the low frequency

pro c edure.
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5.5 Understandin_ Sidewall Transmission

Appendix D contains a copy of the predictions for Run 10 (the

case of blade downsweep). There are a number of interesting

things about the results that lend to an understanding of the

physics involved in the transmission of propeller tones. For

instance, the top five contributing modal pairs are all of

the following type: I) either the acoustic and structural

modes are both resonance controlled (or nearly so), or 2) a

resonant or nearly resonant acoustic mode is coupled to a

nonresonant structural mode (exceptions mainly confined to

the Ist harmonic). In no case, however, is there a single

dominating pair of modes. In fact, the five highest contrib-

uting pairs are responsible for only 47.9% of the acoustic

energy in the cabin at the Ist harmonic. This value rises to

59.3% and 58.0% for the 2rid and 3rd harmonics, but then falls

to only 24.9% and 28.1% for the 4th and 5th harmonics. Thus

the propeller tones are being transmitted by a rather large

number of modal pairs. The impracticality of the idea of

moving modes around in frequency or changing the wavenumber

coupling to affect noise reduction is evident. However this

"modal insensitivity" Is no doubt part of the reason that the

predictions are as good as they are. Furthermore, the re-

sults make clear that improved sidewall treatment will remain

the one particular topic of greatest need if further reduc-

tions in cabin levels (arising from sidewall transmission)

are to be achieved in these types of airplanes.



6.0 FINDINGS AND CONCLUSIONS

The comparisons in this report have led to a number of findings,

the most important of which are reviewed below:

I) In the case of the scale-model tests, the PAIN program

made unbiased predictions. The standard deviation of

the errors was about 4 dB (case of "a heavily damped

trim panel" after excluding the extraneous low fre-

quency datum).

2) In case of the flight tests, the predictions with the

preferred "low frequency formulation" showed a bias
(on the high side) of between 2.6 and 4.3 dB and the

standard deviation of the errors ranged between 2.4

and 4. I dB. Predictions made with the "high frequency

formulation" showed no bias but had a high random er-

ror as exhibited by a standard deviation of 6.3 dB.

3) Predictions made for given harmonics at different

flight conditions were found to be biased but the lev-
el of random error was extremely low as exhibited by

the small standard deviations, indicating that changes

occurring in interior levels caused by flight recon-

figuration are being predicted by the model.

All of the above findings are based on increasing by 4 dB, the

ANOPP free-field predictions of the pressure amplitudes to

account for fuselage surface reflections (rather than 6 dB as

originally programmed in the model). Scale-model blocked

pressure measurements imply that surface reflection effects
dissipate faster (as one moves away from the propeller plane)

than the PAIN model admits. Thus the computer generated

blocked pressure field may be "stronger" than it should be.

This may be offset somewhat by the use of the so-called ANOPP
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method 3 predictions which lead to a "weaker" exterior field

than would be predicted using ANOPPMethod I. Ultimately, the

blocked pressure predictions by ANOPP are needed to resolve

the difficulties, because regardless of the amplitude uncer-

tainties, there are virtually no data available to allow com-

parisons of phase differences between the free and blocked

fields. The PAIN program presently uses the free field phase
data (without modification). Future changes in predictions

that might be realized when the bona fide blocked field is
used are unknown.

6.1 Use of the PAIN Program

PAIN predictions made using ANOPP Method 3 propeller data

should be adjusted downward by3 or 4 dB. The resulting num-

bers should be considered the basic estimates of the space-aver-

age levels in the cabin. Keeping in mind that random errors are

going to be present, a one-sigma band of about 3.5 dB about the

adjusted computer predictions will then give estimates of levels

within which about 2 out of 3 of the flight measurement data

should fall. Approximately I out of 3 should fall outside the

band (hopefully by not much). As time passes and more flight

comparison data are made available, this technique may need to

be revised.

Calculations made using the high frequency formulation should be

carefully scrutinized. Although no bias was indicated by the

hypothesis test on the four harmonics 2 through 5, it is pretty

obvious from Table 25 that for harmonics 3 through 5, there is

a bias (an under-prediction) of more than 4.5 dB. This is prob-

ably caused by not including enough modes in the summation in

Eq. (16) of Reference I. Future validation work should confirm

this.

6.2 PAIN Validation Status

The propeller tone prediction capability of the PAIN program has
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been validated to the extent that, at the conclusion of the

present study, no significant changes to the PAIN program have
been shown to be warranted. It is felt that the present model

is "hamstrung" to a certain extent by the need for ANOPP pre-

diction capability of the actual blocked pressure field on the

fuselage. Eventually, given this information, the PAIN pro-

gram can be modified to include effects such as synchrophasing.

In order to perform such calculations, the PAIN grid will need
to be extended to cover the entire periphery of the fuselage.

The length of the grid should be extended at that time to allow

predictions to be made for cases having high tip clearance to

propeller diameter ratios. Some consideration should be given

to reducing the grid spacing at the same time.

The cabin trim model is simple yet somewhat sophisticated.

Stiffness of the trim panel is not taken into account nor are

details regarding trim installation included. However, the
model has been found to be essentially adequate over the lim-

ited frequency range from, say, about 50 to 1000 Hz. Above

this range, sound isolation will be over-predicted because skin-
to-trim vibration transmission will lead to increased internal

radiation.

Noise Reduction

The PAIN program has noise reduction prediction capability.

However, the quality of the predictions has not been fully in-

vestigated. Studies undertaken in Appendix E of Ref. (I) were

extremely limited. The poor results shown in that work are,

however, expected to be typical for frequencies where the cavity

modes are driven in the stiffness controlled region and where

the trim transmission is dominated by the mechanical vibration

path (see Section 2.8 of Ref. 6 and Eq. A.22 of Ref. I).

It is felt that the noise reduction calculation option in PAIN

should be removed (perhaps made into a separate program) so
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that the propeller prediction capability is allowed to stand

alone (at least until the extreme limitations on the use of

the noise reduction section of the program are clearly de-

fined; for instance, the use of incomplete modal files must

be avoided).

11.

12.
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Analytical Modification of PAIN

The basic results of the analyses presented in Refs. (I) and

(6) inadvertently lead to errors in the calculation of the

fuselage loss factor _, i.e., application of the results

directlY to the fuselage of Figure I, without modification,

leads to a calculation of _ for a case where trim is in-

stalled not only on the cabin sidewall but also the floor.

Also there is a failure to properly take into account the

fact that significant modal energy of lower order structural

modes can be in axial and circumferential stretching motion

of the skin (non-bending).

Consider Fig. I of Ref. (6) and refer to Eqs. (In), (2a), and

(3)-(6) of that paper. Note that if trim is not installed

over a portion of the surface area (such as the floor), for

that portion

Cp = I ; Cp = O.

Cw = I ; Cw = O.

Let X be the set of all points lying on the structure surface

covered with trim, and let _ be the entire surface area (all

points). Eqs. (In) and (2a) of the paper can be written as

8(_'-_)+c.G(_/_';w))"I(_')dE'

and

(f(5(_-_')+_2cpGp(_J_, ;w))pi2(_)d_= -p_2CWfG (_/_,;w)wI(_)d_ •
_ P

,_ (2a)

In the present circumstances, Cw and Cp are replaced by

CwH(_/X), cPH(_/X),
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where

1 ; X ( XE(_/X) = 0 ; E /X
OF POOR QL_ALI_'g

Note that since Cp and Cw are nonzero, no change in the manner

that they are handled in the analysis is required. The fact

that these terms are discontinuous at the boundaries of the

trim covered areas is of no consequence.

Substitution for Cw and Cp in Eqs. (la) and (2a) gives

(8(E'-_)+CwE(E'/X)G(P./}';_)).I(E.)dE.

: /._(PJE, ;,,,)(p°(E, )-%pia(E, ) )d_'
(la)

and

(8 (E-E') +p_2CPH (E/X) Gp (E/_:' ;_) ) pi2(_: ) d_

= -p_2CWfGp(_/E' ;_)w I(_) dE

Consider the left hand side of Eq. (la). Let

(2a)

Then

._(E) = _ ts_,S(E).
S

S
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s

')Q(2/2';_)d2').

Now

m MnYn(_)

Thus the left-hand side of (l a) becomes

= _ _s (@s (_) +Cw_@n(x)_ n(_')

• JX"*_' MnYn(_)

s m MnYn(W)

Now

ro/,n { Ms ; ==s
.@ 0 ; n_s
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6_ _:,_; •

OF POOi:,__;,.-:!../

In the referenced paper, it was an oversight that /X

was evaluated as f.Q • Note if X =_,

above

E(_u(_)/MnYn(_) )f m_(R' )_,,s(_, )d_'

n _X

= _S(x)S_sYs(_) = #s(_)IYs(_) •

This yields for the left-hand side

i

S

which is the result in the paper.

It can be seen that the actual result should have been

E
S _X

+E_S_ c_n(_ )/mMnYn)/xm_S (_ ,)_n(_, )d_' .

S n

Let

)4'

X
M s ; n=s

X
EnsMs ; n _ s .
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The above becomes

S

OF POOi'_C:./:,.:i;

Cw(ns s/_4nY n+__s_n(_) M X

S n

(_.)

\

The laat term (double sum) can be understood as coupling of the

structural modes introduced by the trim installation.

it is reasonable to expect that for all significantly trans-

mitting modes (i.e., those that are largely shell as opposed

to totally floor modes), that

and that for those modes

Nm

Assuming this is so is equivalent to assuming that the double

sum can be neglected, i.e., that damping of structural modes

through intermodal coupling is insignificant because energy

flowing out of one mode to another will be replaced by energy

flow into the mode via yet a third mode. This assumption re-

duces the left hand side of (la) to

"_( 1*(cw"__ (_)))_s@S(._)
S
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where

ms = mMs/MX

ORIGINAL PAGE iSl
OF POOR QUALITY.

Continuing, reconsider (la) which leads to Eq. (6) of the ref-

erence, in the present circumstance (6) becomes

-Yr (I+(C_rY r))Mr_ r +F r - cFri = '_
Pr P P2 Pbl

Thus no significant algebraic changes appear.

Now •consider Eq. (2a). w1(_) is replaced by the modal sum,

(2a) is multiplied through by ¢r(_o and integrated to obtain:

__r(£,)_(6(£-_')+pJcP_(£/x)Qp(_£,;w))p_(£)d£d£

S

This reduces to

_ 2 cwVI r s
= P_ ZD _s .

Fol!o_ring the analysis in the reference, the above can be

shown to lead to a modification of Eq. (i0) of the paper, i.e.,

= C_ CPpw2_nAf '(n 'r)" f $ n2 (_) dE

2 _ k 2) JXbrn V(_n
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Other than this, there are no Changes.

It follows, that as a final conclusion, the-structural"loss

factor _r should be given by the result

= ,2--2__ c_ -2 2(rl_,)2. ICwI/mrOr 2 wU#_r + Zlr

(Note that the new variable mriS used only within the context

of the calculation of U_).

A question might now be asked as to whether the trim coverage

is correct as related to the prediction of transmission through

the trim. The answer is "yes", because thepresence of trim on

the sidewall and its absence on the floor is accounted for in

Eq. (52) of the PAIN model (Ref. I). Note that the trim trans-

mission coefficient Tt(=ICWl2) multiplies only One of the two

terms in the braces of Eq. (52). A bar is placed over the f,

in _'(n,r) to distinguish it from the term f' (n,r) (no bar over

f) with purpose being to limit trim to sidewall and exclude it

from the floor.
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Pro _ram Chanmes

All recuired programming changes to PAIN and its subroutines,

or to auxi!iar7 programs, are specified below.

I)

2)

required to calculate the modified resultChanges

for _ as found in this appendix, letting

MX=GMASS(IR, 2) ; Ms=GMASS(IR, I) : \

Subroutine ETASTR

Line 47 to become

_,'._=AIMAG (CW) *GMASS (IR, 2)/GMASS (IR, I) •

Line 50 to become

C:,_0D2=REAL (_.0 D2) * (GMA_S (IR, 2)/GMASS (IR, I) )** 2
o-

• j

Changes required in the calculations of f'(n,r) and

_'(m,r) af Eq. C52) of Ref. (I) related to misinter-

pretation of sign convention used in the program _.[RP:

Subroutines TONE and _ED

Line 107 of TO_ and Line 79 of _FRED to become

rim2= (FQM(iQ,M)* (FINS (N I, IR)-FINP(N I ,IR) ) )**2

Line 111 of TORTE to become

Din2= (FQM (IQ, M)* (FINS ([_I, IR)*SQRT (TAUE)-FINP (N I,

zR)))**a

Line 8_ of _TRED to become

E_R2= (FQM (I Q, M)* (FI_S (?[I, I__)*SQRT (TAU)-FI_P (N I,

nR)))*-2

3) Caanges required to limit blocked _r_ssure amplitudes

of propeller field to a h dB increase o'_er free field

levels:
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4)

5)

Subroutine PROP

Line 49 to become

REFL=(10.O**(O.3-O.000224*EXP(O.O8*GAMA)))*0.8

Changes to prevent printing truncation of large

values of generalized masses for narrow body

fuselages:

Program PAIN

Line 379 to become

6005 FORMAT (TIO,I3,F8.2,1X,A5,Fg.5,I4,I3,

F7.4,I4,F7.4,F9.2,F8.3,F8.3

Changes to allow propeller input data to be of the

form of that for blade downsweep only:

Program PAINo

Following the Comment Card "C...Propeller Data", add

C INPUT DATA CREATED WITH ANOPP TO BE BLADE

DOWNSWEEP ONLY

C PAIN WILL CREATE DO_'_S_EP OR UPSWEEP USING

ANOPP DOWNSWEEP

Subroutine PROP

Line _4 to become

DELPH=2.0*B*IH*ALPHAL(L)

Following Line 63:"24 CONTINUE" T insert 12 Cards

IF(ROTN.EQ.+I.0) GO TO 30

DO 29 IH=I,NHARM

DO 29 K=I,NK

DO 29 L=1,10

LU=L+9

LB=11-L

PX=PMH(K,LU,IH)

PY=PMH(K,LB,IH)

PMH(K,LU,IH)=PY
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PMH(K,LB, IH) =PX

29 CONTINUE

30 CONTINUE

ORIGINAL PAGE _

OF POOR QUALITY

Program MRPMOD

I) Changes to allow acceptance of increased eigen-

vector output by M/_P (40 instead of 30 eigen-

vectors)

Line 13 to become

C...MTOTAL=HIGHEST VALUE OF M CONSIDERED

Lines I_ and 16 to become

C...FOR EACH VALUE OF M (MAX NMODES=20)

C...NMOD=2*NMODES (MAX NMOD=40)

Lines 64 through 67

(MAX 15)

DIMENSION STYPE(2),TYPE(2,5),FREQ(40),TYP_(2),

NMODE(40),

I DMAX(40),COORDS(41),COORDP(41),DISPS(41,3,40),

TMODE(_0,5),

2 DISPP(41,3,40),GENM(6,40),GENMAS(40),DUF_ff(700),

NA(700),

3 TITLE(16),NORD(700)

Lines 68 through 70

DIMENSION EVALS(72),MVALS(40,15),NVALS(40,15),

EVECS(40,15),

I MVALP(40,IO),NVALP(40,IO),EVECP(40,IO),MVLS(40,

15),NVLS(40,15),

2 EVCS(40,15),MVLP(40,10),NVLP(40,10),_ICP(40,

IO),TYPP(40)

Lines 7 2 through 74

DIMENSION FR(40,15),TYP(40,15),GMASS(40,3,15),

MVS(40,5,15),

I NVS(40,5,15),EVS(40,5,15),MVP(40,3,15),_VP(40,

3,15),_-_P(40,3,15),

2 DIS(40,41,15),KTL(2)

-180-



i)

2)

Control Card Changes

ORIGINAL PAGE f_]
OF POOR QUALITY

Control cards for MRPMOD showing required DEFINE statement

needed to create direct access permanent file.

/JOB

PAIN, T 400, P I.

/USER
/ CHARGE
ROUTE, OUTPUT, DC=PR, UN=*, ST=**, FID=POPE, DEF.

DEFINE,TAPEg=STRSO. "

GET, MRPMO D4.

ATTACH, TAPE7=MRPSM4.

ATTACH, TAPE8=MRPAM4.

GET, MRPMO D C.

COPYBF,MRPMODC,LGO.

LDSET (PRESET=ZERO)

L GO, PL= 50000.

GOTO, SU_ARY.
EXIT.

SUMMARY.

DAYFILE.

/NOSEQ

/FOR
/READ, MRPMO D4

/ZOF

PAIN control cards (modified program PAINM) showing use of

structural modal file as direct access type.

/JOB

PAIN, T400, P I.
/USER
/CHARGE
ROUTE, OUTPUT, DC=PR, UN=*, ST=**, FI D=POPE, DEF.

GET, PAINMD4.

GET, TAPEI I=CYLSO.

ATTACH,TAPE9=STR50._--Direct access file to local file

GET ,PAINMC.

CO PYBF, PAINM C, LGO.
LDSET (PRESET=ZER0)

LGO, PL= 50000.

GO TO, SUMMARY.
EXIT.

SUMMARY.

DAYFILE.

/NOSEQ
/ OR
/READ, PAENMD4
/EOF
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37 CYL2D control card change required to access the Inter-

national Mathematical and Statistical Library (IMSL)

subroutines.

Instead of

ATTACH, IMSL/UN=LIBRARY.

Use

BEGIN, IMSL4, IMSLCCL.
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Appendix B

@

SCALE MODEL PREDICTIONS

Structural modes list (partial)

Acoustic modes list (partial)

Modal distributions

In sequence for the 3000, 4000 and 5000 rpm runs:

• Propeller noise data (Ist 3 harmonics)

• Interior predictions

• Highest modal contributors to interior levels
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Appendix C

MODAL CHARACTERISTICS

• Business Aircraft

• Small Body Aircraft

• Narrow Body Aircraft
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ORIGfl_AL F,;?_C_ o_._

OF POOR QUALITY

MERLIN IUC

15 6

i0

5 3

50.0

9.27 0.84

4.54 13.66

TAPE 7 SYMMETRIC MODES

TAPE 8 ANTISYMMETRIC MODES

SMALL DIAMETER NO. 1

15 6

i0

5 3

62.6
13.0 1.145

5.34 19.68

TAPE 7 SYMMETRIC MODES

TAPE 8 ANTISYMMETRIC MODES

NARROW BODY

15 &

I0

5 3

73.7

23.0 i. 875

6.73 23.64

TAPE 7 SYMMETRIC MODES

TAPE 8 ANTISYMMETRIC MODES
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Appendix D

FLIGHT TEST PREDICTIONS

• Input Data (PAIN)

• Rum No. 10 (Downsweep)
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ORIG_,L PJ_C_Z :_
OF POOR Qu,._tl V'

NASA FLIGHT TEST

1.1012 1.204

21
50.0 63.0

315.0 400.0

2000.0 2500.0
9.27 0.84

COMPAR I-SONS :-RUN- NO.

334.08 343.0

80.0

i0

500.0

3150.0
50.0

CABIN LENGTH = 7.89 METERS?

7.89 0.00

630.0

STRUCTURAL LOSS FACTORS

0.0400 0.0320 " 0.0250

0.0063 0.0050 0.0040

0.0010 0.0008 0.0006

ACOUSTIC LOSS FACTORS
0.0
0.0
0.0
TRIM PANEL: INSULATION 2.1

100.0 125.0 160.0 200.0

630.0 800.0 I000.0 1250.0

4000.0 5000.0
0.33

FUSELAGE LENGTH = 9.27 METERS

0.0200 0.0160 0.0125 0.0100
0.0032 0.0025 0.0020 0.0016

0.0005 0.0004

250.0
I600.0

0. 055 I. 95

0.0 0.0
1.6 2.1

30.0 40.0

325.0 360.0
I. 63 1.48

0.38 O. 30

0. Og O. 065
1180.0 1179.0

1110.0 1070.0

675.0 620.0
1.7 2.3

9.0 11.5

27.2 27.0

PROPELLER TONES

FOUR BLADE DOWTY

2.35 75.0
5 16 S

1 1 O. O0

1 • 1 0.00
i 1 O. O0

1 1 O. O0

1 1 O. O0

1 2 .15

1 2 .15

1 2 .15
1 2 .15

1 2 .15
I 3 .29

0.0080

0.0013

INCHES PFIO5+LINING OF 1.95 KG/M2

28.10 2.0

0.0 0.0
2.7 3.3 5.0 8.0 10. I 20.0

55.0 80.0 124.0 165.0 223.0 280.0

398.0 428.0 460. O
1 •32 I•16 O. 95 O. 75 O. 58 O. 47

0.25 0.21 O. 17 O. 14 O. 115 0.01

O. 055 0. 050 0. 045
1177.0 1175.0 1170.0 1165.0 1150.0 1130.0

1035.0 980.0 920.0 865.0 805.0 735.0

580.0 550.0 525.0
2.9 3.5 4.0 4.5 5.8 7.2

14.5 18.5 22.0 23.8 25.8 26.8

26.3 25.2 23.8

2.69 M DIA, 1568 RPM, CLEARANCE=O.06 PROP

4.0 1568.0 +1.0

I -.91667E+02 .37323E+02

2 -.52304E+02 .6614:3E+01
3 -.11721E+02 .I1487E+01

4 .29884E+02 .19901E+00

5 .71876E+02 .34483E-01

I -.11272E+03 .:37273E+02

2 -.94720E+02 .67555E+01

3 -.75439E+02 .12022E+01

4 -.55057E+02 .21367E+00

5 -.33556E+02 .37906E-01
1 -.13034E+03 .36975E+02

ROTOL:

1.12

i. 02

1.02
1.02

I. 02

I. 02

i. 02

1.02

I. 02
I. 02

I. 02

1.02

1.52

1.52
1.52

I. 52
I. 52

I. 53

1.53

I. 53
1.53

1.53

I. 57

DIA.
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